4.1.1 INTRODUCTION

This section describes the existing visual setting of the project site and vicinity, identifies associated regulatory requirements, evaluates potential impacts, and identifies mitigation measures related to implementation of the proposed project.

4.1.2 METHODOLOGY

This section provides an overview of the methodology that was used to determine the potential change in the visual environment that would occur with the proposed project.

The visual assessment included review of relevant documents, aerial photographs, online mapping, and field surveys. Specifically, the proposed project's visual setting was developed using available information on visual resources in the project vicinity. The College Area Community Plan (City of San Diego 1989) was reviewed to gain a better understanding of the spatial distribution of land uses in the project area and to gather information regarding the prevalent urban design concepts present in the community. This review was supplemented through an examination of aerial photographs and online mapping tools which provided an updated image of the community, as well as through a review of the Visual Quality/Community Character Technical Report prepared for the San Diego State University Plaza Linda Verde Project (Dudek 2009) which provided information regarding the local setting, visual character of the SDSU campus, and sources of on- and off-campus lighting. Further, Dudek graphic designer Paul Caligiuri and environmental planner Josh Saunders conducted photographic field surveys of the proposed project site and surrounding community on March 1, 2017 and March 18, 2017, respectively. Observations were primarily recorded via photographs taken with Global Positioning System (GPS)-enabled personal devices (i.e., mobile phones).

Additionally, the visual assessment included a viewshed analysis to determine the area in which the proposed project components would be visible. The viewshed was determined through review of aerial photography, topographic maps, and field surveys. Representative views of the proposed project area were selected using the mass and scale of the existing 11-story Chapultepec Hall (located adjacent to the project site), and these views were recorded at on- and off-site locations.

The presence of scenic vistas in the surrounding area was determined through a review of the College Area Community Plan, aerial photographs, and topographic maps. Potential scenic vista locations were identified and photographed during field surveys. Eligible and officially designated state scenic highways were identified using the Caltrans Scenic Highway Program. Views from identified scenic highways were documented during the field survey.

A photographic inventory within the viewshed was completed to document the visual resources and visual setting and to illustrate the existing visual character of the project site and surrounding area. Aerial photography and the spatial distribution of land uses occurring within the surrounding area were used to identify sensitive receptors in relation to the project site. Public vantage points including roadways from which views to the project site were likely to be available were identified using aerial photography and topographic maps. Visibility to the project site from these identified vantage points was verified during the field survey. Existing views from select public vantage points were documented and photographed. Four public vantage points were selected as representative views of and towards the proposed project site that would be available to sensitive receptors in the surrounding area. These representative views included both on- and off-campus locations.

Visual simulations also were used as a tool in determining the change in the existing visual environment through use of field photography, digital terrain modeling, architectural floor plans and elevations, and true scale three-dimensional models to create accurate models of the proposed project. Visual simulations of the project were prepared from the four representative viewpoints referenced above.

Related to lighting and shade/shadow, Francis Krahe & Associates, Inc. prepared a shading technical report for the project evaluating existing and proposed daytime shading conditions that would be experienced at specific receptor sites at the project's western boundary, Hewlett Drive, and at the College View apartments parking lot that lines the east rim of the canyon and would encompass a portion of the project site. This report is included in Appendix B. Existing and proposed conditions information is discussed below.

The above data was assembled to determine the potential visual impacts in relation to established significance thresholds. Visual changes and level of significance were evaluated based on the duration of the anticipated view (typically applicable to passing mobile viewers), line-of-sight in relation to whether interrupted, peripheral, or direct views would be substantially affected, distance of the view (foreground, mid-view or distant view), and number of viewers. The visual changes were then assessed to determine whether a significant impact

(i.e., a substantial or potentially substantial, adverse change in the environment) would result for viewers located within the proposed project area in relation to California Environmental Quality Act ("CEQA") significance thresholds. In the event that a significant impact would result, mitigation measures are recommended to reduce the identified impact. An evaluation was completed to determine the level of significance following implementation of the proposed mitigation measures.

Lastly, this section addresses aesthetic-related comments received by SDSU during the NOP response period including increased shading of and effects of project-related lighting on residential properties, and the bulk and scale of proposed buildings and effects to existing visual character of the area including the College View Estates neighborhood. This section also addresses NOP comments regarding potential impacts to scenic vistas associated with construction and operation of the proposed project.

4.1.3 EXISTING CONDITIONS

This section describes the existing conditions in the project area and identifies the visual resources that could be affected by the proposed project. The existing environmental setting discussion below provides a general description of the project vicinity and the project site. Following the general description, the environmental setting is organized according to visual/aesthetic resources identified in Appendix G of the California Environmental Quality Act (CEQA) guidelines, i.e., scenic vistas, scenic highways, visual character and quality, etc.

4.1.3.1 OVERVIEW

The proposed project is located along the Interstate 8 (I-8) corridor in southwestern San Diego County. The area is primarily urban in character and is developed with a variety of land uses including residential, commercial, recreational, and institutional. Open space in the area tends to be concentrated at Mission Trails Regional Park, a large expanse of undeveloped natural lands comprised of a variety of terrains and habitats, although open space also is distributed throughout the landscape via a relatively vast system of canyons. The natural terrain of the area includes several prominent mountains and hills as well as a network of mesas and canyons that drain to Mission Valley and the San Diego River. With a few exceptions, the majority of the development in the area has occurred on the mesa tops and within the San Diego River Valley (which includes Mission Valley), while canyon hillsides and drainage bottoms have remained somewhat natural.

The project site is located within the northern extent of the College Area community and is accessible by several roadways. In addition to I-8, which provides regional access, College Avenue, Montezuma Road, 55th Street and Remington Road provide local access to the project site. College Avenue is a four-lane roadway with a north/south orientation providing access from I-8 to the College Area to the south and the community of Del Cerro to the north. Montezuma Road is also a four-lane roadway, with an east/west orientation and a striped center median. North of Montezuma Road, 55th Street is a four-lane roadway with a north-south orientation and an occasional raised median, and Remington Drive is a two-lane east-west oriented roadway with a stripped center median through the SDSU campus. The off-campus segment of Remington Road located west of the project site and Hewlett Drive through the College View Estates residential community are not striped.

Situated in the northwestern extent of the main SDSU campus (see Figure 4.1-1, Project Area Map), the site of the project and development in the surrounding area are located on the flatter, mesa tops, which, near I-8, tend to become elongated and narrower in form and ultimately separated from one another by steep canyon terrain. In addition, the developed portions adjacent to and on the proposed project site consist of the 11-story Chapultepec Hall, 2-story Cholula Community Center, and existing surface parking lots (Parking Lots 9 and 10A). Land uses in the immediate surrounding area consist of low-density, single-family residential uses to the west within the College view Estates neighborhood, medium-density residential (i.e., SDSU on-campus student housing) to the northeast, and on-campus recreation facilities and public service (i.e., University Police) uses to the east and south (see Figure 4.1-1). Undeveloped, steep, and densely vegetated canyon terrain encompasses the Phase II and III development sites and is located to the west and north of Chapultepec Hall and the Phase I developmentproject site. The topography of the project site and immediate surrounding area is illustrated on Figure 4.1-2, Project Site Topography.

4.1.3.2 SCENIC VISTAS

Canyon and valley topography dominates the immediate project vicinity and scenic vistas generally are limited and consist primarily of views to and from prominent terrain located in Mission Trails Regional Park. Prominent terrain includes Cowles Mountain (elevation of 1,592 feet above mean sea level (amsl)), Pyles Peak (elevation of 1,379 feet amsl), Kwaay Paay (1,194 feet amsl), South Fortuna (1,094 feet amsl), and North Fortuna (1,291 feet amsl), which are located approximately 3.7, 4, 4.1, 4.3 and 5 miles, respectively, northeast of the project site. The locations of these peaks and the project site are depicted on **Figure 4.1-3, Mission Trails Regional Park: Scenic Vistas**. Chapultepec Residence Hall and the project site are visible from

these peaks and these peaks tend to be visible from roadways near the project site, including Remington Road (between Hewlett Drive and Chapultepec Hall) and generally, from private residences located north of Remington Road in the College View Estates neighborhood. The summits of these peaks are accessible via the Cowles Mountain Trail and connecting Pyles Peak Trail, the Kwaay Paay Trail, and the North/South Fortuna Mountain Loop trail via the Fortuna Saddle and provide trail-based recreationists (primarily hikers but also trail runners and mountain bikers) broad, panoramic views extending to Mission Valley, downtown San Diego, southern San Diego County and Tijuana. Expansive and long views to the north and west also are available from these elevated vantage points.

While the broad and long views available from the summit trails identified above are relatively similar, the amount of foot traffic on and the visual character of the trails varies. The most popular of the trails, Cowles Mountain Trail, is accessible via a developed staging area ("Cowles Staging Area") and parking lot located at the intersection of Golf Crest Drive and Navajo Road (City of San Diego 2015a). From the staging area, hikers and trail runners climb the terrain in a general south to north alignment and a series of switchbacks provide ample viewing opportunities of the landscape to the south. Wood post and rail fencing line the trail and occasionally, mile markers and signs warning recreationists of trail-adjacent habitat restoration projects dot the trail. The trail experiences heavy traffic on weekends (generally from 30 minutes before sunrise to 30 minutes after sunset).

Despite its relatively mild elevation profile and proximity to Cowles Mountain, the Pyles Peak Trail generally experiences light use. The narrow and minimally marked trail traverses the western slopes of Cowles Mountain. Views from the Pyles Peak summit are similar to the wide, long views available from Cowles Mountain. However, due to a slightly lower elevation, the hills encompassing the northeastern portion of the Del Cerro neighborhood block the majority of the SDSU campus from view at Pyles Peak although the tall, rectangular form of Chapultepec Residence Hall is distinguishable in the southern landscape. The Kwaay Paay Trail, and the North/South Fortuna Mountain Loop are located in the central and northern portions of the regional park and consist of a narrow, steep trail and a relatively small summit area (Kwaay Paay) and a slightly wider trail traversing moderate to steep and occasionally, rock strewn, terrain. Views from the summit are panoramic and limited only by the presence of background mountainous terrain to the north, east, and south.

With respect to Remington Road, as eastbound motorists and pedestrians pass Hewlett Drive and approach Parking Lot 10A on campus, the terrain to the north falls and with the exception of several scattered tall palm trees, vegetation along the canyon rim is comprised of shrubs low

to moderately tall in height. The general scarcity of particularly tall trees or other prominent vegetation along the canyon's rim results in views along an approximate 300-foot long segment of Remington Road that extend off-campus and include the dark ridgelines of prominent terrain in Mission Trails Regional Park (see Viewpoints D and F in Section 4.1.1.4, Visual Quality and Character, below). However, the view is available to mobile receptors (i.e., motorists and pedestrians) that tend to focus on visual elements along the Remington Road corridor (as opposed to off-site components) and the duration of the available view is brief (approximately 8 seconds assuming vehicular travel at the posted speed limit of 25 miles per hour). In addition, Remington Road is not a designated public view corridor per the College Area Community Plan or the City of San Diego General Plan. As the duration of the available view is brief and Remington Road is not a designated public view corridor, views from Remington Road along the project site frontage are not considered scenic vistas.

4.1.3.3 SCENIC HIGHWAYS

Located approximately 0.20-mile north of the project site, Interstate 8 (I-8) is an eligible state scenic highway from its western terminus to State Route (SR) 125 in La Mesa (Caltrans 2017). The posted speed limit on I-8 near the project area is 65 miles per hour. Motorists passing the elevated mesa landform where the main SDSU campus is located occasionally have, inferior angled views (i.e., views from a lower elevation to a particular object/structure in the landscape located at a greater elevation) towards campus due to the convergence of descending west- and east-facing canyon terrain, which creates narrow viewing windows to the south. Approximately 0.8-mile west of College Avenue, a viewing window is available to eastbound I-8 motorists however, the deck and concrete pylons of a bridge supporting the Green Line of the San Diego Trolley as it spans the canyon obscures the project site and adjacent Chapultepec Hall from view. At this location, the westbound travel lanes of I-8 are situated approximately 30 feet lower in elevation than the northbound travel lanes and thus, views to the south including views of Chapultepec Hall are unavailable due to intervening terrain.

In addition to I-8, three officially designated scenic highways are located within 5 miles of the project site (Caltrans 2017). Located approximately 4.6 miles to the north of the project site at Santo Road, SR-52 (from Santo Road east to Mast Boulevard) is an officially designated state scenic highway. Views to the project site from the approximately 5-mile long segment of SR-52 are obscured due to the presence of intervening terrain (i.e., mountainous landforms of Mission Trails Regional Park), elevated terrain between Sheppard Canyon and Murphy Canyon, and adjacent landscaping including tall eucalyptus trees. SR-125 from SR-94 to I-8 near La Mesa and SR-163 from the south to the north boundary of Balboa Park also have been officially designated

as state scenic highways (Caltrans 2017); however, views to the project site from these state routes are obscured due to the presence of intervening terrain, development, and landscaping

4.1.3.4 VISUAL CHARACTCER AND QUALITY

The 7.84-acre project site encompasses existing Parking Lots 9 and 10A and undeveloped canyon terrain to the north and west of Chapultepec Hall at the northwest corner of the main SDSU campus (see Figure 4.1-1). The site is located west of the Aztec Recreation Center, International Student Center, and the boxy and grey, two-story College View student apartment complex. As shown on Figure 4.1-1, the College View apartments and two- to four-story student housing developments immediately east and west of 55th Street are not located within the SDSU Campus and Existing Campus Master Plan boundary. On-campus facilities to the south of the project site and south of Remington Road include the long, two-story SDSU Public Safety building featuring a small surface parking lot and a curvilinear turf frontage along 55th Street, and on-campus intercollegiate recreational facilities including Peterson Gym, Tony Gwynn Stadium, Aztec Softball Field, and Aztec Tennis Court Complex. Primarily undeveloped and densely vegetated canyon lands extend north from the project site to I-8. Parking Lot 10A, a 33space surface parking lot lining the canyon edge, is included within the project boundary and is immediately adjacent to the Phase II development sitewest of Chapultepec Hall. One- and twostory single-family homes located along Hewlett Drive within the College View Estates neighborhood are located to the west of the project site and more specifically, are immediately west of the Phase III development site. Additional one- and two-story homes within the College View Estates neighborhood are located west of Hewlett Drive and north and south of Remington Road on generally elevated mesa-top landforms.

One- and two-story single-family homes within the College View Estates neighborhood are located west of the project site along Remington Road, Hewlett Drive and other local roadways in the area (see **Figure 4.1-1**). Several residences located north of Remington Road and along Hewlett Drive abut the steep canyon terrain across from <u>Chapultepec Hall and the project sitethe area planned to support Phase III</u>. Mature street trees are a constant presence in this single-family residential neighborhood and private landscaping displays a variety of forms, colors and textures. Kept lawns, hedges and shrubs are intermixed with dense plantings of colorful flowers, dark green shrubs, and occasionally, grey and brownish red rock accent yards.

Off-campus residential uses located northeast of the project site and along 55th Street consist of several two and three-story apartment complexes primarily occupied by SDSU students. Apartment structures generally display grey or off-white colored facades and relatively long

boxy forms accentuated by straight horizontal and vertical lines and repeating window and door elements. Street-facing facades tend to be articulated by horizontal rectangular masses that facilitate pedestrian movement between floors of structures and afford residents useable private space. Sidewalks are flanked by vehicles (street parking is permitted on 55th Street) and strips of green lawn. Landscaping consists of small spherical shrubs, spreading tropical plants and tall, narrow palm trees which, along with distribution line and poles, populate the skyline.

Recreation and limited public service uses populate the landscape located south of the project site. The Aztec tennis center, softball field, and Tony Gwynn Stadium are located to the south and are set back and buffered from Remington Road by sidewalk and landscape elements. A vine-covered fence and opaque outfield wall covered fencing obscure views to the baseball field from Remington Road. Stadium elements, including tall nighttime lighting structures, a large rectangular and electronic scoreboard, and the press box and seating areas are elevated and are briefly visible to passing motorists. The multi-story Aztec Recreation Center and University Police/Public Safety building are located to the south and southeast as is the large, boxy form and unarticulated, windowless facade of the Peterson Gym. The Fowler Athletics Center is located south adjacent to Peterson Gym and Viejas Arena is located to the east across 55th Street. Brightly colored and multi-story student housing encompassing Fraternity Row and the Piedra Del Sol Apartments are located south of Viejas Arena along Aztec Walk. Additional student housing and institutional uses are located further to the south along 55th Street.

Viewpoints

As explained in Section 4.1-2, Methodology, several locations from which receptors are afforded views of the proposed project site in the surrounding area were selected as representative viewpoints of the proposed project. These observation points (i.e., viewpoints) form the basis of the impact analysis as it relates to visual character and quality of the site and surrounding area, and are characteristic of the various viewing angles, distance zones, visibility conditions, and surrounding landscape context available at locations from which the proposed project would be visible. The viewpoints are captured in photographs taken of and towards the project during the photographic field survey. The location of these photographs and their relationship to the project site are depicted on Figure 4.1-4, Viewpoint Locations. The existing photographs taken at each viewpoint are included on Figures 4.1-4a through 4.1-4c, Existing Site Views, and a brief description of the view is provided below each image. Table 4.1-1 lists the identified viewpoints and provides location, approximate distance and orientation to project site, viewing angle/observer position, and general visibility conditions to the project site. A brief description of the view and visual character of the landscape also is provided below by viewpoint.

Table 4.1-1 Viewpoints and General Visibility

Viewpoints	Location	Approximate Distance/ Orientation to Project Site	Viewing Angle/ Observer Position	General Visibility Conditions to project site
А	55th Street	100 feet/northeast	Inferior	The project's Phase I development site (existing Parking Lot 9) is partially obstructed by campus landscaping. Chapultepec Hall is visible to the west but is partially screened by landscaping.
В	55th Street	175 feet/southeast	Normal	The project's Phase I development site is located approximately 10 feet lower in elevation than Viewpoint B and partially obstructed by campus landscaping. Chapultepec Hall is marginally visible through a small grove of eucalyptus trees.
С	Remington Road	Adjacent to project site	Normal	Southern boundary of the project's Phase I development site is marked by tall eucalyptus trees. The majority of Phase I development site is obscured by local topography that abruptly descends north of Remington Road.
D	Remington Road	40 feet/south	Normal	Tall palm trees and dense shrubs are located west of Chapultepec Hall and enthe project's Phase II development site, which is located immediately north of Remington Road on Lot gin the primarily undeveloped canyon. Clear views to Chapultepec Hall are available.
Е	Parking Lot 10A	On project site	Normal	Similar existing built environment and landscape characteristics on the Phase II development site are visible from Viewpoints D and E. Field lighting at Tony Gwynn Stadium is visible but the field is obscured by vegetation in the foreground.
F	Parking Lot 10A	On project site	Normal	The canyon encompassing to the Phase II and Phase III west of Chapultepec Hall and the project development site dominate the foreground and the lack of tall development to the north provides for long views to prominent terrain in Mission Trails Regional Park.
G	Remington Road	380 feet/west	Normal	The project's Phase II and Phase III development site isare obscured by College View Estates neighborhood residential development and landscaping. Chapultepec Hall is visible but partially obscured by tall landscaping.

Table 4.1-1 Viewpoints and General Visibility

Viewpoints	Location	Approximate Distance/ Orientation to Project Site	Viewing Angle/ Observer Position	General Visibility Conditions to project site
Н	Remington Road	730 feet/west	Normal	The project's Phase II and Phase III development site are is obscured by College View Estates neighborhood residential development and landscaping. Wings of Chapultepec Hall are visible but partially obscured by street trees.
I	Hewlett Drive	220 feet/west	Inferior	The project site is obscured by College View Estates neighborhood residential development, landscaping, and utilities. Chapultepec Hall is partially screened by landscaping but the tall and wide building is the dominant feature in the view.

55th Street (Viewpoints A and B)

Viewpoint A is located on 55th Street, approximately 100 feet to the northeast of Parking Lot 9, and provides an inferior angled views towards the Phase I development site. The view is the southwest towards Parking Lot 9 (parking lot signage and the sole entrance of 55th Street are visible) which is lined by tall and broad pine trees along the south and east perimeter (see Figure 4.1-4a). The parking lot is located east of Chapultepec Hall (the 11-story residence hall is partially visible in the Viewpoint A photograph and lends an element of scale to the scene) and south of Remington Road. The asphalt paved surface of Parking Lot 9 is situated approximately 12 feet lower than that of Remington Road.

Viewpoint B is located approximately 350 feet north of Viewpoint A and 175 feet southeast of the project site. Located on 55th Street, the view looks northwest towards broad pines trees along the east and southeast perimeter of Parking Lot 9, scattered mature eucalyptus trees along the lot's northern perimeter and a bougainvillea speckled chain link fencing running parallel to Remington Road (see **Figure 4.1-4a**). Again, Chapultepec Hall is partially screened from view by existing mature vegetation. From this particular vantage point, the surface of Parking Lot 9 is not visible. Instead, the <u>Phase I developmentproject</u> site is marked by tall, spreading trees that tends to decrease in density from east to west.

Representative viewer groups at Viewpoints A and B consist of motorists, pedestrians, and bicyclists.

Remington Road (Viewpoint C and D)

Viewpoint C is located approximately 575 feet west of Viewpoint B and is situated on the sidewalk adjacent to the Cholula Community Center (on campus). The viewpoint is located on Remington Road and the east-oriented view looks towards the project's Phase I development site that currently supports mature landscaping and obscured terraced terrain. Overhead streetlights and electrical distribution lines supported by tall wooden poles are located in a regular pattern along Remington Road. The lack of student housing or other campus structures displaying moderate to tall form on Parking Lot 9 provides opportunities for views extending off-campus and to the developed hilly terrain of Del Cerro and the Cowles Mountain peak to the northeast (see Figure 4.1-4a).

Viewpoint D is located south of Parking Lot 10A and Remington Road and north of the Aztec Tennis Complex. The view looks to the northeast towards Parking Lot 10 A, the project's Phase II development site, and 11-story Chapultepec Hall. The Phase II development site currently supports dDescending canyon terrain that is densely vegetated with low to moderately tall mounded shrubs, tall and skirted fan palms, and large and broad pine trees is located to the west of Chapultepec Hall. Unlike Chapultepec Hall, visible off-campus student housing to the northeast displays a low-vertical profile and does not attract attention in the view. The current lack of development in the canyon and on the project site provides viewing opportunities that extend off-campus to Del Cerro hillsides developed with residences and to prominent, mountainous terrain in Mission Trails Regional Park. The vertical, stacked form of Pyles Peak is detectable in the view (see Viewpoint D, Figure 4.1-4b).

Representative viewer groups at Viewpoint D consist of motorists, pedestrians, and bicyclists.

Parking Lot 10A (Viewpoint E and F)

Viewpoint E is located along the northern perimeter of Parking Lot $10\underline{A}$ and looks to the east towards the project site (i.e., Phase II development site) canyon terrain and Chapultepec Hall. The densely vegetated and verdant, sloping terrain of the western portion of the project site dominates the view yet the cream-colored exterior, tall rectangular form, and repeating window patterns marking the west elevation of Chapultepec Hall also command attention (see **Figure 4.1-4b**). The thin line of metallic support poles topped with banks of stadium lighting rise from obscured bases while acknowledging the proximity of Tony Gwynn Stadium to Chapultepec Hall.

Viewpoint F looks north from the northern perimeter of Parking Lot $10\underline{A}$ and illustrates the primarily undeveloped and densely vegetated character of existing canyon terrain that encompasses the western portion of the project site. The view also illustrates the proximity of

existing off-campus residential lands accessible off Hewlett Drive to the project site (see **Figure 4.1-4b**). The view from Viewpoint E is long but is somewhat limited in extent by Chapultepec Hall to the east and tall and mature trees to the northwest. Still, prominent, mountainous terrain in Mission Trails Regional Park including Pyles Peak, Kwaay Paay, South Fortuna, and North Fortuna are visible as are the hazy, more distant silhouettes of Iron Mountain to the northeast (approximately 15 miles away) and Black Mountain (approximately 14 miles) to the north.

Representative viewer groups at Viewpoints E and F consist of motorists, pedestrians, and bicyclists.

Remington Road (Viewpoints G and H)

Viewpoint G is situated along Remington Road in the College View Estates neighborhood. Approximately 0.15-mile west of Chapultepec Hall, Viewpoint E illustrates the visual character of single-story ranch-style homes and tall street trees that typify the College View Estates neighborhood (see **Figure 4.1-4c**). In addition, the existing view demonstrates the typical scale of residential development in the College View Estates neighborhoods in comparison with the large, rectangular mass and prominent, vertical scale of the 11-story Chapultepec Hall. Partially obscured by street trees, the cream-colored exterior and straight, horizontal and vertical lines of Chapultepec Hall are evident in the view.

Viewpoint H is located approximately 375 feet northeast of Viewpoint G and is situated on Remington Road in the College View Estates neighborhood. As with Viewpoint G, Viewpoint H illustrates the primarily single-story scale of neighborhood residential development and the prevalence of landscaped lots and street trees in the College View Estates neighborhood (see **Figure 4.1-4c**). Despite partial obstruction by tall and mature street trees, the tall vertical scale and rectangular form of Chapultepec Hall draw attention in east-oriented views.

Representative viewer groups at Viewpoints G and H consist of motorists, pedestrians, and bicyclists.

<u>Hewlett Drive (Viewpoint I)</u>

Viewpoint I is located on Hewlett Drive and looks to the east towards single-family residential development and an assortment of vehicles lining the descending terrain. The thin diagonal lines of electrical and communication lines and aligned along Hewlett Drive and lots appear to be moderately to densely landscaped with hedges, shrubs, and tall trees. East of Hewlett Drive, Chapultepec Hall rises above foreground residences and looms large in the visual environment (see **Figure 4.1-4c**). Hardy Tower is visible to the northeast but displays a shorter scale, and is visually subordinate to Chapultepec Hall because it is located further away.

Shading

Remington Road and portion of the proposed project site (i.e., Phase I development site) encompass relatively flat mesa landforms. The Phase II and Phase III development sites contain canyon terrain that falls from south to the north. The developed areas of the proposed project site and the majority of the Phase II development site arise located at a higher elevation than the student apartment complexes to the east and northeast and the single-family residential properties to the west, and northwest in the College View Estates neighborhood. The project area map is included as **Figure 4.1-1** and existing site topography is depicted on **Figure 4.1-2**.

The proposed project site includes the 11-story Chapultepec Hall and SDSU Parking Lots 9 and 10A. As discussed in the Aesthetics Technical Report (see Appendix B), shadows cast by Chapultepec Hall on the winter solstice (December 21) represent the worst-case scenario regarding shading as the Northern Hemisphere tilt away from the sun is maximized and the sun occupies a low position in the sky. Due to its tall vertical profile and wide rectangular form, Chapultepec Hall creates shadows that extend to residential properties to the northwest following sunrise and lasting until approximately, 10 a.m. (see Appendix B, Aesthetics Technical Report for the SDSU New Student Housing Project). As the sun moves across the sky throughout the day, the angle and length of shadows cast by Chapultepec Hall change and at midday, shadows extend to undeveloped canyon terrain to the north. Around 2 p.m., shadows extend to the west-facing slope of canyon terrain to the northeast of the proposed project site and around 3 p.m., shadows from Chapultepec Hall are cast onto the College View Apartments parking lot. As the sun approaches the western horizon between 3 p.m. and 4 p.m., shadow lengths increase and extend to the College View Apartments and 55th Street and last until sunset.

4.1.3.5 LIGHT AND GLARE

The proposed project site is located within and adjacent to an existing urban area that is exposed to nighttime lighting. Primary nighttime lighting sources near the project site include building interior lights (primarily stair lights and illuminated windows), Parking Lot 9 and 10A lighting installed at and near Chapultepec Hall, and sports field lighting associated with Tony Gwynn Stadium, the Aztec Softball Field, the tennis complex, soccer field, and football practice field. In addition, streetlights installed along Remington Road, and interior and exterior lighting installed on private residential property in the College View Estates neighborhood contribute nighttime lighting to the existing visual environment.

Sources of glare in the project area primarily consist of glass windows in campus and offcampus facilities and structures. The prevalent Mission Architectural style displayed by campus facilities typically incorporates cool-colored stucco façades and newer buildings, such as the stone-like paneled exterior of Fowler Athletics Center, which generally consists of non-reflective exterior surfaces and finishes.

4.1.4 RELEVANT PLANS, POLICIES, AND ORDINANCES

Federal

There are no federal aesthetics or visual resource policies that would be applicable to the proposed project.

State

State Scenic Highway Program

Established in 1963 by the State Legislature and managed by the California Department of Transportation (Caltrans), the goal of the State Scenic Highway Program is to "preserve and enhance the natural beauty of California" by identifying those portions of the State highway system and adjacent scenic corridor that require special conservation treatment (Caltrans 2008). Highways included in the State Scenic Highway Program should "traverse an area of outstanding scenic quality, contain striking views, flora, geology, or other natural attributes" (Caltrans 2008). Caltrans designated both eligible and official state scenic highways. Eligible state scenic highways consist of state routes nominated for official designation by the local governing body with jurisdiction over the lands adjacent to the proposed scenic highway. In order to be identified as an "eligible" state scenic highway, a visual assessment of the proposed corridor and a Scenic Highway Proposal must be completed by the local jurisdiction and Caltrans must determine that the route meets scenic highway criteria. Official State Scenic Highway designation requires preparation of a Corridor Protection Plan containing measures, ordinances, zoning, and/or planning policies applicable to the area of land within the scenic corridor and the Plan must be deemed acceptable by Caltrans.

State scenic highways within five miles of the project site consist of an eligible state scenic highway (I-8) and three officially designated state scenic highways (SR-52, SR-125, and SR-163). The availability of views to the project site from these roadways is discussed in Section 4.1.1.3, above.

California Code of Regulations, Title 24

Title 24 of the California Code of Regulations (CCR), also known as the California Building Standards Code, consists of regulations to control building standards throughout the State. The following components of Title 24 include standards related to lighting:

California Building Code (Title 24, Part 1) and California Electrical Code (Title 24, Part 3) The California Building Code (Title 24, Part 1) and the California Electrical Code (Title 24, Part 3) stipulate minimum light intensities for safety and security at pedestrian pathways, circulation ways, and paths of egress. All lighting for the proposed project will comply with the requirements of the California Building Code.

California Energy Code (Title 24, Part 6)

The California Energy Code (CEC) provides allowances for lighting power and lighting control requirements for various lighting systems, with the goal of reducing energy consumption through efficient and effective use of lighting equipment.

Section 130.2 sets forth requirements for Outdoor Lighting Controls and Luminaire Cutoff requirements. All outdoor luminaires rated above 150 watts shall comply with the backlight, up light, and glare "BUG" in accordance with IES TM-15-11, Addendum A, and shall be provided with a minimum of 40% dimming capability activated to full on by motion sensor or other automatic control. This requirement does not apply to street lights for the public right of way, signs or building façade lighting.

Section 140.7 requires that outdoor lighting power density allowances in terms of watts per area for lighting sources other than signage. The lighting allowances are provided by Lighting Zone, as defined in Section 10-114 of the CEC. Under Section 10-114, all urban areas within California are designated as Lighting Zone 3.

Section 130.3 requires that sign lighting controls with any outdoor sign that is on day and night must include a minimum 65 percent dimming at night. Section 140.8 of the CEC sets forth lighting power density restrictions for signs.

California Green Building Standards Code (Title 24, Part 11)

The California Green Building Standards Code, which is Part 11 of Title 24, is commonly referred to as the CALGreen Code. Paragraph 5.106.8 Light pollution reduction, provides that all nonresidential outdoor lighting must comply with the following:

- The minimum requirements in the CEC for Lighting Zones 1–4 as defined in Chapter 10 of the California Administrative Code; and
- Backlight, Uplight and Glare (BUG) ratings as defined in the Illuminating Engineering Society of North America's Technical Memorandum on Luminaire Classification Systems for Outdoor Luminaires (IESNA TM-15-11, Appendix G); and
- Allowable BUG ratings not exceeding those shown in Table A5.106.8 in Section 5.106.85 of the CALGreen Code (excerpt included in Appendix B); or
- Comply with a local ordinance lawfully enacted pursuant to Section 101.7, whichever is more stringent.

Local

SDSU Lighting Policy

SDSU's lighting policy strives to achieve safety and security on all walkways and parking areas while also accentuating unique architectural qualities of campus facilities (SDSU Physical Master Plan, Phase I, pp. 157–160). SDSU's lighting policy also voluntarily follows the adopted ordinances of the City of San Diego for any outdoor lighting upgrades in attempts to reduce potential lighting impacts on astronomical research occurring at the Palomar and Mount Laguna observatories.

The design concept for on-campus exterior lighting is to achieve consistency in the selection of light sources, light fixture, poles and material as a means to improve the visual quality of an installation and reduce occurrences of cluttered and chaotic landscapes. General criteria applicable to all on-campus lighting includes use of high pressure or metal halide fixtures where public safety or aesthetic issues are important, achieving the minimum light distribution requirements necessary to provide a safe night-time environment and use of lighting (and varying intensity levels of lighting) to help direct motorists and pedestrians to major entrances and parking lots (SDSU Physical Master Plan, Phase I, pp. 157–160).

City of San Diego General Plan

As a state agency, SDSU (California State University) is not subject to local land use and planning regulations, such as the City of San Diego General Plan, College Area Community Plan, or city municipal ordinances, although, to the extent feasible, consideration is given to these documents as part of the analysis.

The Conservation Element of the City's General Plan (City of San Diego 2008a) contains policies that pertain to the natural landforms, including canyonlands that help make San Diego unique. Although SDSU is not subject to these policies, policies of the Conservation Element pertain to urban canyons and environmentally sensitive lands located outside the campus boundaries near the project site.

The goal of the General Plan Urban Design Element is to "guide development toward a desired scale and character that is consistent with the social, economic and aesthetic values of the City of San Diego (City of San Diego 2008b). The term "urban design" encompasses the physical features present in the landscape that help characterize the image of a street, neighborhood or community and consists of both natural and man-made features. Canyons and mesas are identified in the Urban Design Element as natural features that contribute to San Diego distinctive character.

<u>City of San Diego - College Area Community Plan</u>

The College Area community plan contains eight elements, several of which relate to visual quality and community character. These include the Urban Design Element, which contains recommendations concerning hillside and slope development.

City of San Diego Municipal Code

As indicated above, SDSU's lighting policy encourages consistency with the City of San Diego's outdoor lighting policies. The City of San Diego Municipal Code (LAMC) regulates lighting with respect to building lighting, transportation, street lighting and light trespass (i.e., the spillover of light onto adjacent light sensitive properties). The City also enforces the building code requirements of the San Diego Building Code, the California Building Code, the California Green Building Standards Code (CALGreen), and the California Electrical Code.

The following sections of the Municipal code pertain to glare and lighting and are thus relevant to aesthetics:

Chapter 12, Article 142.0730 Glare Regulations

- (a) A maximum of 50 percent of the exterior of a building may be comprised of reflective material that has a light reflectivity factor greater than 30 percent.
- (b) Reflective building materials shall not be permitted where the City Manager determines that their use would contribute to potential traffic hazards, diminished quality of riparian habitat, or reduced enjoyment of public open space.

(Added 12-9-1997 by O-18451 N.S.; effective 1-1-2000

Chapter 14, Article 142.0740 Outdoor Lighting Regulations

(a)_-Purpose and Intent

- (1)-Outdoor lighting fixtures shall be installed in a manner that minimizes negative impacts from light pollution including light trespass, glare, and urban sky glow in order to preserve enjoyment of the night sky and minimize conflict caused by unnecessary illumination.
- (2)-Regulation of outdoor lighting is also intended to promote lighting design that provides for public safety and conserves electrical energy.
- (3)-It is the intent that, in addition to the regulations set forth in Section 142.0740, outdoor lighting fixtures shall be installed and operated in compliance with the following regulations, to the extent applicable:
 - (A)-____California Energy Code, California Code of Regulations, Title 24, Part 6;
 - (B) G_____Green Building Regulations (Chapter 14, Article 10); and
 - (C)-Electrical Regulations (Chapter 14, Article 6).

-(c)-General regulations that apply to all outdoor lighting:

(1) Outdoor lighting shall comply with the applicable California Energy Code lighting power requirement for the lighting zones identified on Map C-948 filed in the office of the City Clerk.

September 2017 San Diego State University

- (2)-Shields and flat lenses shall be required to control and direct the light below an imaginary horizontal plane passing through the lowest point of the fixture, except for:
 - (A)-_____Residential entrance lights installed in accordance with the California Building Code and Electric Code requirements;
 - (B)_Outdoor lighting fixtures less than 4,050 lumens including landscape lighting and decorative lighting;
 - (E)-Lighting for sports and athletic fields;
 - (F)_Outdoor illuminated signs.
- (3)-New outdoor lighting fixtures shall minimize light trespass in accordance with the Green Building Regulations where applicable, or otherwise shall direct, shield, and control light to keep it from falling onto surrounding properties. Zero direct-beam illumination shall leave the premises.
- (4)-Outdoor lighting shall not exceed nominal 4000 Kelvin Color Correlated Temperature (CCT).
- (5)-All outdoor lighting, including search lights, shall be turned off between 11:00 P.M. and 6:00 A.M. except:
 - (A)——Outdoor lighting may remain lighted for commercial and industrial uses that continue to be fully operational after 11:00 P.M. such as sales, assembly, and repair; and for security purposes or to illuminate walkways, roadways, equipment yards, and parking lots subject to the following:
 - (i)-_Adequate lighting for public safety shall be maintained. Outdoor lighting shall otherwise be reduced after 11:00 P.M. where practicable.
 - (B)_Outdoor lighting for the following is permitted to remain lighted after 11:00 P.M. and is exempt from the maximum Kelvin CCT and maximum lumen requirements specified in Section 142.0740(c)(4) and (c)(5)(A):
 - (i)_Outdoor lighting used to illuminate recreational activities that are not in a residential zone may continue after 11:00 P.M. only when equipped with automatic timing devices and shielded to minimize light pollution.
 - (ii)-Illuminated on-premises signs for businesses that are open to the public after 11:00 P.M. may remain lighted during business operating hours only. Illuminated off premises advertising display signs shall not be lighted after

- 11:00 P.M. Signs located both on-and off premises shall be equipped with automatic timing devices.
- (iii)—Outdoor lighting for automated teller machines and associated parking lot facilities and access areas shall be provided during hours of darkness in accordance with California Financial Code Sections 13040-13041.
- (C)_Outdoor lighting for illumination of the flag of the United States of America.
- (6)_On properties which are adjacent to or contain sensitive biological resources, any exterior lighting shall be limited to low-level lights and shields to minimize the amount of light entering any identified sensitive biological resource areas.

City of San Diego Light Pollution Code

As noted above, CSU/SDSU, as a state agency, is not subject to local planning regulations, including those of the County of San Diego. Additionally, such regulations are not applicable outside of the County's jurisdictional boundaries. As such, the County's Light Pollution Code is summarized below for informational purposes only.

The Light Pollution Code was developed by the County Department of Planning & Development Services and Department of Public Works in cooperation with lighting engineers, astronomers, land use planners from San Diego Gas & Electric (SDG&E), Palomar and Mount Laguna observatories, and local planning and sponsor groups to address and minimize the impact of new sources of lighting on nighttime views. The Light Pollution Code establishes shielding requirements per fixture by lighting type (i.e., outdoor lighting used for outdoor sales, eating areas, or advertisements (Class I), security lighting (Class II), and decorative lighting (Class III)) and according to location (Zone A or B) (County of San Diego 2009). For purposes of lighting requirements, the code separates the unincorporated portion of the County into two zones: Zone A and Zone B. Zone A includes all unincorporated lands located within a 15-mile radius of the Palomar or the Mount Laguna observatories, and Zone B includes all areas not included in Zone A (County of San Diego 2009). If the Light Pollution Code were applicable, the proposed project would be located in Zone B as the Mount Laguna Observation is located approximately 40 miles to the east.

Other

IESNA Recommended Practices

The Illuminating Engineering Society of North America (IESNA) recommends illumination standards for a wide range of building and development types. These recommendations are widely recognized and accepted as best practices and are therefore a consistent predictor of the type and direction of illumination for any given building type. For all areas not stipulated by the regulatory building code, municipal code or specifically defined requirements, the IESNA standards are typically used as the basis for establishing the amount and direction of light.

The IESNA 10th Edition Lighting Handbook defines Outdoor Lighting Zones relative to a range of human activity versus natural habitat. Table 26.4, Nighttime Outdoor Lighting Zone Definitions, included in the Appendix D hereto, establishes the Zone designation for a range of existing lighting conditions, from low or no existing lighting to high light levels in urban areas. Table 26.4 is referenced by the California Energy Code Title 24 in section 10-114 of the CEC and section 140.7 relative to allowable energy use for outdoor lighting. In addition, the IESNA 10th Edition Lighting Handbook defines Recommended Light Trespass Limits in Table 25.5, included in the Appendix hereto, relative to the Outdoor Lighting Zones. The Recommended Light Trespass Illuminance Limits describe the maximum light trespass illuminance in Lux at the location where trespass is under review. As noted above, the CEC stipulates that all urban areas in California are designated as Lighting Zone 3. IESNA Table 25.5, lists a Pre-curfew 8 Lux (0.76 foot candles) maximum at the location where trespass is under review for Zone 3. This limit would apply to all building and exterior site lighting.

Further, according to the IESNA 10th Edition Handbook "glare occurs in two ways: when either the luminance1 is too high, or luminance ratios are too high"2. The evaluation of too high luminance is determined by the maximum luminance of the visible light source. The second factor, "luminance ratios too high", is evaluated by the ratio of the light source luminance as compared to the luminance within the field of view visible at an observer position. This ratio is

_

¹ Luminance describes the brightness of an illuminated surface. Luminance is a measure of reflected light from a specific surface in a specific direction over a standard area. It is measured in foot lamberts (candelas per square foot). A candela is defined as a measure of light energy from a source at a specific standard angle and distance. Metric equivalent for Luminance is candelas per square meter, or nits.

² IESNA 10th Edition, Section 4.10 Glare, page 4.25.

referred to as Contrast, and is determined by the variation of luminance. For residential occupancies at night, "High," "Medium," and "Low" contrast are terms used to describe effect of the contrast ratios (the ratio of peak measured luminance to the average within a field of view) of greater than 30:1, between 10:1 and 30:1, and below 10:1, respectively. Contrast ratios above 30:1 are generally uncomfortable for the human eye to perceive3 and may present an unacceptable condition for relaxation and enjoyment of a residence.

4.1.5 THRESHOLDS OF SIGNIFICANCE

The significance criteria used to evaluate the project impacts to aesthetics are based on Appendix G of the CEQA Guidelines. According to Appendix G of the CEQA Guidelines, a significant impact related to aesthetics would occur if the project would:

- Have a substantial adverse effect on a scenic vista.
- Substantially damage scenic resources, including, but not limited to trees, rock outcroppings, and historic buildings within a state scenic highway.
- Substantially degrade the existing visual character or quality of the site and its surroundings.
- Create a new source of substantial light or glare which would adversely affect day or nighttime views in the area.

Lighting

The determination of significance for lighting impacts is made with consideration given to the following factors:

- The change in ambient nighttime levels as a result of project sources; and
- The extent to which project lighting would spill off the project site and affect adjacent light-sensitive areas.

September 2017 San Diego State University

³ IESNA 10th Edition, Section 4.10.1 Discomfort Glare, page 4.26

Based on these factors, the regulatory requirements identified in Section 3.2 above, and IESNA definition of glare, the project would have a significant light or glare impact on a sensitive receptor (residential uses or commercial or institutional land uses that require minimal night time illumination) if:

- Project lighting generates light emissions that produces a light intensity exceeding 0.74 foot-candles at the property line of a residence or other sensitive receptor; or
- Project lighting creates new high contrast conditions (contrast ratio over 30:1) visible from a field of view from a residential use or other sensitive receptor.

Shadow and Shading

The State of California does not regulate daylight shadows and the resulting effect on land uses, nor do the City of San Diego or County of San Diego have established thresholds governing shade or shadows. Guidelines for evaluating shading impacts are included in the Los Angeles CEQA Thresholds and the City and County of San Francisco CEQA guidelines (City and County of San Francisco 2012). In the absence of local thresholds, and because the project may create new daylight shadows that would be cast on residential land uses in the surrounding area, the thresholds and guidelines for these jurisdictions are utilized and are described below.

The Los Angeles CEQA Thresholds Guide (City of Los Angeles 2006) indicates project impacts would normally be considered significant if shadow-sensitive uses would be shaded by Proposed Project-related structures for more than 3 hours between the hours of 9:00 AM and 3:00 PM Pacific Standard Time (between late October and early April), or more than four hours between the hours of 9:00 AM and 5:00 PM Pacific Daylight Time (between early April and late October).

In the City and County of San Francisco, there are two circumstances that could trigger the need for a shadow analysis: (1) If the proposed project would be over 40 feet tall, and could potentially cast new shadow on a property under the jurisdiction of the Recreation and Park Department, per San Francisco Planning Code Section 295; and/or (2) If the proposed project is subject to review under the California Environmental Quality Act (CEQA) and would potentially cast new shadow on a park or open space such that the use or enjoyment of that park or open space could be adversely affected.

While the project includes buildings greater than 40 feet tall, The buildings developed as part of the project would not cast shadow on property identified on the City's Parks and Recreation Department Park Facilities Map or on park or recreational (or publically accessible) open space.

Therefore, the City and County of San Francisco CEQA guidelines were not considered as applicable to this project when compared to the City of Los Angeles guidelines. The City of Los Angeles guidelines were used because the conditions of the proposed project resembles those found in cities like Los Angeles. Specifically, the proximity of the proposed project to residential land uses (i.e., shadow-sensitive uses) and the expressed shade and shadow concerns of local residents resembles the potential conflict occurring between tall structures and existing nearby shadow-sensitive uses in denser cities and area. Shadow-sensitive uses are located west of the proposed project site and would potentially be exposed to shadows cast by project buildings. Therefore, the Los Angeles CEQA Threshold is used to evaluate shadow effects associated with proposed project structures.

4.1.6 IMPACTS ANALYSIS

Would the project have a substantial adverse effect on a scenic vista?

There are no designated scenic vistas in the immediate project area and the SDSU campus is located within an existing developed community that is not generally known or noted for scenic vistas (See Figures 4.1-4a, 4.1-4b, and 4.1-4c, respectively). As stated in Section 4.1.1, publicly accessible scenic vistas in the surrounding area where views of the project site are available are limited and consist primarily of prominent terrain located approximately 3 to 5 miles from the proposed project site in Mission Trails Regional Park. The summits of these mountains are accessible by hiking trails and access roads in the regional park and provide broad panoramic views of Mission Valley, downtown San Diego, southern San Diego County, and Tijuana. Although distant and made from an elevated vantage point, views of the SDSU campus are available from these summit trails. Also, views from Remington Road to the south of the project's Phase II development sitewest of Chapultepec Hall and across (and east) of Parking Lot 10A are occasionally long and extend to prominent terrain in Mission Trails Regional Park and more distant terrain including Black Mountain and Iron Mountain. Therefore, potential construction and operational impacts to existing views from these scenic vistas are analyzed in the following paragraphs.

Construction/Temporary Impacts

As detailed in Section 2, Project Description, construction of the proposed project would occur over three phases. Construction of each of the project components for the three phases generally would generally proceed along include a seven-step process that would begin with site

September 2017 Ne San Diego State University preparation, demolition and grading, progress with building construction, installation of hardscape/landscape, trenching, and conclude with application of architectural coatings.

During construction of the project, views of the project site from recreational trails and summits in Mission Trails Regional Park would be dynamic as mobilization and site preparation activities would rapidly transition to establishment of building foundations and retaining walls. As construction progresses, steel framing and construction of exterior shells would occur. Temporary visual impacts associated with construction activities would be associated primarily with the influx of construction workers, equipment, and vehicles to the project site. Noticeable changes to the existing form, line, color and texture of the site would <u>primarily</u> result from vegetation removal, grading activities, and <u>the progressive</u> introduction of rectangular building frames and forms.

The visual effects of vegetation removal and grading would be noticeable to trail-based recreationists atop Cowles Mountain, Pyles Peak, Kwaay Paay and North and South Fortuna (and associated trails). Because these visual effects would occur more than 3 miles away and at ground level, site preparation and grading activities would not introduce elements that could block, screen or impede existing views from identified scenic vistas. The distance between scenic vistas and the project site and the superior viewing angle afforded to trail-based recreationists would result in visual contrasts resulting from new lines created by vegetation removal and lightly colored soils exposed by grading activities on the project site. As such, project activities would not be visually prominent and would not attract substantial attention.

As construction progresses, the distance between trails, summits, and project components would reduce the apparent size of project components. Further, the verticality and massing of building frames and envelopes would not be overly apparent from scenic vistas because these elements would be backscreened by terrain, vegetation and existing development. The back screening effect would reduce the visual prominence of frames and envelopes by affecting perceptions of scale and mass through juxtaposition of project components and existing landscape features. Backscreening would also aid frames and envelopes recede into the background landscape.

Vegetation and grading would not introduce elements capable of blocking or screening available broad, panoramic views from scenic vistas in Mission Trails Regional Park. Building frames and envelopes would be backscreened by terrain, vegetation and existing development that would reduce the visual prominence of frames and envelopes forms and lines.

Therefore, the project would result in a less-than-significant impact concerning adverse effects to scenic vistas in Missions Trails Regional Park during construction.

Operational/Permanent Impacts

Given the expansive, panoramic nature of views available from trails and summits in Mission Trails Regional Park, the introduction of four to five-to-fourteen-story residence halls and a two-story food service building on a 7.843.15-acre site at the northwestern corner of the main SDSU campus would not display spatial or scale dominance that would substantially affect views from identified scenic vistas. In addition, the superior viewing angle afforded to trailbased recreationists and the distance between identified scenic vistas and proposed project structures on the SDSU campus would reduce the apparent scale and visual prominence of structures. Similar to Chapultepec Residence Hall, new residence halls would be visible from scenic vistas however, the back screening effect of background terrain, vegetation and existing development would reduce the visual prominence of new vertical and solid forms in the landscape. Further, proposed project structures would be located at a background viewing distance and at a lower elevation than trail and summit viewing locations. As a result, the proposed project would not block, screen, or impede the availability of expansive, panoramic views from scenic vistas. In the morning and evening hours, side lighting may enhance the visibility of the proposed residence halls by highlighting the lightly colored off-white color exteriors of structures against the backdrop of a collection of slightly darker and hazy colors in the landscape. However, these effects would not compromise the expansive, panoramic nature of views available from scenic vistas.

Therefore, the project would result in a less-than-significant impact to scenic vistas in Mission Trails Regional Park during operations.

Would the project substantially damage scenic resources, including, but not limited to trees, rock outcroppings, and historic buildings within a state scenic highway?

Construction/Temporary Impacts

Obstructed views of the project site are available from the eastbound I-8 travel lanes along an approximate 850-foot long viewing window created by descending canyon terrain that converges and facilitates drainage of higher elevation lands. From the westbound I-8 travel lanes, the project site would be obscured entirely by ascending (and densely vegetated) sloping terrain located in the interstate median that vertically separates the east- and west-bound travel lanes. I-8 is an

September 2017 San Diego State University eligible state scenic highway, but the City (and County) of San Diego has not yet adopted a Corridor Protection Plan regulating or conditioning land uses in the interstate viewshed.

While Phase II and III and Phase I Food Services Building sites would be obscured by intervening canyon terrain and the elevated, horizontal concrete deck of the San Diego Trolley Green Line, tThe Phase I residence hall development project site would be briefly and marginally visible to passing eastbound I-8 motorists. Views from eastbound I-8 travel lanes to the Phase I development project site would be made in passing and would be experienced at relatively high travel speeds. Assuming a travel speed of 65 miles per hour, the available viewing window along the east bound I-8 travel lanes would remain in the field of vision of eastbound interstate motorists for less than 10 seconds. Further, the proposed Phase I four-story residence halls would be constructed on an existing developed site (i.e., Parking Lot 9) and as such, construction activities would not encroach into the adjacent canyon and would not require the removal of canyon shrubs and trees.

Site preparation would entail the removal of existing landscaping trees lining the northern and southern perimeter of Parking Lot 9 however, and as viewed from the eastbound I-8 travel lanes, the removal of ornamental landscaping would not substantially damage the highway viewshed and would likely go unnoticed to motorists. Existing views to the south along eastbound I-8 near the project site are limited by abruptly ascending canyon terrain. This canyon terrain is obscured by a continuous, relatively tall concrete and rock accent retaining wall. The presence of this large, vertical retaining wall is concurrent with the segment of the elevated San Diego Trolley Green Line bridge structure that also works to limit the extent of available views to the south.

Construction activities at the project site would be <u>partially</u> screened from view of eastbound I-8 motorists by intervening terrain and the elevated bridge deck of the San Diego Trolley Green Line. <u>and eExisting views of canyon terrain and vegetation would largely</u> remain intact during construction of the project.

Therefore, construction of the project would result in a less-than-significant impact to scenic resources within an eligible state scenic highway.

Operation/Permanent Impacts

Similar to the discussion above under Construction Impacts, views to proposed residence halls would be obscured by intervening canyon terrain and the elevated horizontal deck of the trolley bridge. The mesa top and corresponding east- and west-facing slopes of the terrain on which

Hewlett Road and adjacent single-family residences are located upon extends out from Remington Road and effectively blocks views of Chapultepec Hall and the majority of the project site from interstate motorists. The terrain and the trolley bridge would also block views of Phase III and Phase II development sites. Views to the lower floors of the Phase Iproposed Residence halls would be available to passing motorists however; the transitory nature of the project components in southerly views from eastbound I-8 travel lanes would not substantially alter or damage the existing scenic qualities of the viewshed. Further, because these elements would be located on the existing Parking Lot 9 site, they would not alter the existing natural composition of the visible canyon landscape. Based on the screening effect of Chapultepec Hall and the presence of trolley bridge, the upper floors of the proposed buildings proposed for development as part of Phase I are not anticipated to be visible to passing eastbound motorists. Furthermore, if the verticality of these structures is visible above the trolley bridge deck, effects to the scenic highway eligibility of I-8 would not be compromised as the structures would not result in substantial damage to particularly scenic resources within the viewshed.

The existing campus marque, located at the College Avenue off-ramp and existing multistory campus facilities including the Arts & Letters and the Arts North Buildings are located approximately 0.25-east of the project site. These existing features are skylined when viewed from the east- and westbound travel lanes of I-8 and are located in closer proximity to the interstate. The introduction of new structures that could potentially be briefly skylined when viewed from the eastbound I-8 travel lanes would not introduce a condition foreign to the existing environmental setting and interstate viewshed in the immediate project area.

Because the project site and proposed residence halls would be screened from views of eastbound I-8 motorists by intervening terrain and the elevated bridge deck of the San Diego Trolley Green Line, the project would result in less-than-significant operational impacts to scenic resources within an eligible state scenic highway.

Would the project substantially degrade the existing visual character or quality of the site and its surroundings?

Construction/Temporary Impacts

During the initial stages of Phase I construction, temporary barricades and fencing would be installed around the development site and existing on-site uses including a small, semi-circular retail building, a multi-purpose building (i.e., Cholula Community Center), the parking area located immediately east of the Cholula Community Center, and Parking Lot 9 (including

overhead lighting) would be demolished. Existing trees and shrubs along the perimeter of Parking Lot 9 and near the Cholula Community Center would be removed. While the subtraction of trees would reduce visual quality, this effect would be temporary, as landscaping elements would be restored to the site during the hardscape/landscape installation phase of construction.

Following vegetation removal, site grading would commence. During the approximate five-week grading period, equipment including excavators, crawler tractors, graders, loaders, scrapers, and dozers would operate on site; however, given the existing site topography and with the installation of fencing around the site perimeter, grading activities and associated construction equipment would be obscured from view of Remington Road motorists. Perimeter fencing would not be able to screen Phase I structural framework from view during the building phase of construction. As construction progresses, the structural framework would be replaced by building envelopes. This site transformation would be noticeable to receptors, and alterations would continue as hardscape landscaping is installed and architectural coatings are applied to building exteriors.

With the exception of demolition of existing uses, similar steps and alterations would occur during the construction of Phase II and Phase III development. The existing Chapultepec Hall would remain open and accessible throughout the duration of construction of all development phases and would not be altered by the proposed project.

Construction of Phase I development the proposed project would not substantially degrade the existing visual character or quality of the site and its surroundings. The Phase I development project site encompasses an existing surface parking lot lined by ornamental trees on three sides and abutting an existing structure (i.e., the Cholula Community Center) on the west. The site is located approximately 10 feet lower in elevation than the surface of Remington Road that parallels the parking lot boundary to the south. Given the existing developed character of the Phase I development project site, the anticipated screening of grading activities from Remington Road due to the installation of temporary barricades and fencing, and the reintroduction of street trees and landscaping following building construction, construction of proposed residence halls and the food services building would not substantially degrade existing site character or quality. Further, existing 11-story Chapultepec Hall establishes a visual buffer between the project Phase I construction site and off-site receptors and uses to the west. Therefore, construction of Phase I development the project would result in less-than-significant impacts concerning substantially degradation of the existing visual character or quality or the site and its surroundings.

The Phase II and Phase III development sites consists of undeveloped, vegetated canyon terrain generally located to the north of Remington Road and west of existing Chapultepec Hall. Specifically, the Phase II development site is located adjacent to Remington Road and Parking Lot 10A (the lot may be used for staging during construction) and Phase III consists of four building pads oriented in a splayed arrangement on canyon terrain. Construction would encroach into the canyon and would extend the built environment to this primarily natural appearing landscape. Removal of vegetation from the development sites would expose underlying soils and introduce lightly colored surfaces to the otherwise drab and dark canyon color palette. Further, removal of vegetation to limits of disturbance would create regular horizontal lines and forms that would contrast with the rugged and steep form of undeveloped canyon terrain.

In addition, the pouring of foundations would create rectangular and greyish forms and the introduction of construction equipment and vehicles to these areas would produce additional color contrast and introduce elements of constant movement. While visual contrast resulting from construction activities would be experienced primarily from residences located immediately west of the proposed project site on Hewlett Drive, residences on 55th Street that abut the eastern rim of the canyon, and residences lining mesa top terrain located north of Interstate 8 on Del Cerro Boulevard, brief views to the Phase II and Phase III development sites are available to Remington Road motorists and pedestrians generally between Parking Lot 10A and Chapultepec Residence Hall. As both private stationary and public mobile viewers would experience the site transformations resulting from construction activities above, Therefore, construction of Phase II and Phase III would not substantially degrade existing visual character or quality. Impacts would be potentially significant.

Operation/Permanent Impacts

General Visual Character

Development of the proposed project would result in a change in the visual appearance of the project site. The existing Cholula Community Center and Parking Lot 9 would be demolished to accommodate the project, which would add approximately 2,600850 new student beds <u>inwithin seven_two four-story</u> residence halls in the northwestern corner of campus. Significantly, however, the 11-story Chapultepec Hall would remain. Thus, the proposed project would entail the introduction of <u>multiple residential towers</u> residence halls and a food service building into a developed area adjacent to existing residence halls and apartments that would encroach

into the canyon landscape. Phase III of the proposed project includes the construction of four buildings organized in a splayed arrangement in the canyon behind Chapultepec Hall.

Figures 4.1-5 and 4.1-6, Architectural Renderings, illustrate the project site and proposed residence halls as viewed from an aerial perspective (Figure 4.1-5) and from the Remington Road/55th Street intersection (Figure 4.1-6)Phase I, and II, and III development that would be viewed from Remington Road and 55th Street in the immediate vicinity of the project site. As shown in the architectural renderings, the new structures would be architecturally consistent with the Spanish Colonial and Mission Revival styles of the original SDSU campus buildings. The inclusion of large, lightly colored, relatively unadorned walls, roofs of reddish hued materials, arched window entrances openings, and rectangular windows and square towers is deliberate and would aesthetically link the proposed project's architecture to existing Spanish Colonial and Mission Revival styled structures on campus. The following is a description of individual structures that would be built as part of the proposed project.

In addition, the proposed project would incorporate garden/courtyard areas as part of the proposed landscaping design (see Figure 4.1-7, Architectural Rendering and Project Description Figure 2-6, Proposed Landscape Plan). These landscaped areas would serve to mediate the climate of the housing complex by providing both shade and insulation. The landscape plan also provides for tree-lined pedestrian walkways, a residential park, street tree plantings, bougainvillea covered arcades, and a large fire pit, and outdoor seating areas for residents and SDSU students.

Phase I. Figure 4.1-6a8a, Phase I Elevation - Residence Halls and Food Service Building South Elevation of the Proposed Project and Chapultepec Hall, provides a rendereding elevation of Phase I development and that illustrates the proposed bulk, scale, and character of the proposed residences halls and the food services building. Chapultepec Hall is included in the elevation for bulk, scale, and general design reference. Figure 4.1-8b6b, Phase I Elevations — West Elevation of the Proposed Project and Chapultepec HallFood Service Building Elevation, illustrates the intended character and proposed scale of the proposed building residence halls and their relationship to Chapultepec Hall and the local terrain. Figure 4.1-96c, Phase I Proposed Project SectionTerrain Section of the Proposed Project and Chapultepec Hall, illustrates the topographical characteristics of the Phase I development project site area and depicts the development project site's relationship to Remington Roadthe local terrain.

Phase II. Phase II would be constructed west of Chapultepec Hall and would consist of up to 850 beds in a single structure of up to 188,000 GSF. This building would be up to 14 stories in

height, with at least one below grade at Remington Road. Figure 4.1-7, Phase I and Phase II Elevation, depicts the proposed scale, form, and character of Phase I development and the Phase II residence hall. As shown on Figure 4.1-7, visible floors of Phase I and Phase II development are constructed at or above the grade of Remington Road.

Phase III. Figure 4.1-8, Phase II and Phase III Elevation, depicts the proposed scale, form, and character of the Phase II and Phase III residence hall buildings. Existing Chapultepec Hall is visible in Figure 10 but Phase I development is screened from view. Figure 4.1-9, Phase II and Phase III Section, illustrates the Phase II and Phase III development sites' relationship to Remington Road and the underlying canyon terrain.

In addition, the proposed project would incorporate garden/courtyard areas as part of the proposed landscaping design (see Figure 2-6, Proposed Landscape Plan). These landscaped areas would serve to mediate the climate of the housing complex by providing both shade and insulation. The landscape plan also provides for tree-lined pedestrian walkways, a residential park, street tree plantings, bougainvillea covered areades, and a large fire pit, and outdoor seating areas for residents and SDSU students.

The architectural style proposed for the residence halls and food service building would generally be consistent with the existing campus structures designed in the Spanish Colonial and Mission Revival styles. The bulk and scale of Phase II and Phase III development would be comparable to existing Chapultepec Hall which would create strongreduce the form and line contrast of the new structure in the landscape. Figures 4.1-5 through 4.1-7 presents architectural renderings of the project structures and spaces as viewed from roadways in the surrounding area. The style, bulk, and scale of buildings as illustrated in the images appearis consistent with prevalent architectural styles on campus and the renderings depict an altogether pleasant aesthetic. However, Phase II development would be taller than the Phase I residences halls and existing Chapultepec Hall (see Figure 4.1-7).

The clustering of development around Chapultepec Hall would create a relatively dense student housing community that would partially occupy the canyon terrain across from existing single-family residential uses. Because Tthe proposed scale and mass of the proposed Phase Iproject development would be smaller than and generally be-consistent with the character of adjacent Chapultepec Hall and the on-campus apartment under construction on College Avenue. However, tThe proposed site layout would result in a new 14- and 112-story structures (i.e., Phase II and Phase III development) on undeveloped canyon terrain. While Tthese tall and broad rectangular towers building would be located in near single-family

residences in the College View Estates neighborhood, it would also be located adjacent to Chapultepec Hall, an existing on-campus building of comparable scale. Through repetition of familiar building scale, use of tall, rectangular forms, and inclusion of wide expanses of repeating elements (i.e., windows), Tthe resulting juxtaposition would create strong form and line contrast of Phase II development would be reduced. Phase I and Phase II development would not in the visual environment that the proposed project would not substantially degrade the existing visual character or quality of the site and its surroundings. Therefore, I impacts would be potentially less than significant significant.

Key Views

Four key observation viewpoints were used in this aesthetics assessment. The locations of selected key observation viewpoints are presented on **Figure 4.1-10**, **Key View Locations**. Figures 4.1-11 through 4.1-14 present static images of the project site from the selected public key viewing locations in the surrounding area where conditions generally afford clear visibility to the project site or development areas. Visual simulations are also included on Figures 14 through 17 and present 3-D computer simulations of the project as anticipated to be experienced by viewers in the project vicinity. An evaluation of the existing visual character and anticipated project effects is provided by key view location below.

Key View 1

Key View 1, which is located on Del Cerro Boulevard is located approximately 0.6-mile north of the project site on an elevated mesa landform developed with single-family residences. At Key View 1, a rare gap in residential development creates opportunities for unobstructed views to I-8, the northern portion of the main SDSU campus, and residential development in the College View Estates neighborhood. **Figure 4.1-11, Key Observation Viewpoint 1: Del Cerro Boulevard** depicts the existing conditions in the visual environment as viewed in southerly oriented views at Key View 1.

As shown in **Figure 4.1-11**, with the exception of 11-story Chapultepec Hall, which creates a bold, vertical form on the southern horizon, mesa-top development tends to decrease in scale from east to west. The presence of tall and wide Chapultepec Hall interrupts the generally consistent development pattern of east-to-west decreasing bulk and scale of campus development detectable in the view. Implementation of the proposed project (see **Figure 4.1-11**) would entail the construction of new multi-story residential buildings located to the eastwest of Chapultepec Hall. When viewed from Key View 1, the new residence hall would appear to be

slightly smaller in scale than the adjacent and existing on-campus 11-story building. would further interrupt the detectable pattern through the introduction of tall and broad residential towers on the project site. From Key View 1, the scale of Phase Ithe proposed project and Phase III-development would display be comparable to existing campus development located to the east. In addition, the bulk, scale, and color of the new buildings would be consistent with existing and nearby on-campus uses. height however; Phase II development would be taller than existing and proposed structures. Further, as viewed from Key View 1, the Phase II residential tower would minimize the bulk and scale displayed by existing single family residences in the College View Estates neighborhood buffered by a canyon from the proposed project and that tend to be partially obscured by mature trees and other private property landscaping. In addition, implementation of the proposed project, would cluster tall and wide towers that would dominate the view.

From Key View 1, Phase IProject development would display a bulk and scale consistent with that of existing campus development including the Fowler Athletic Center and the Calpulli Center (the flat roofline of these buildings are detectable in the Key View 1 landscape). The lightly colored exterior of new buildings would be compatible with the lightly colored exteriors of the cluster of visible on-campus buildings to the west including on-campus apartments. However, Phase II and Phase III residential towers would create moderately strong form and line contrast and would result in assemblage of tall buildings across the canyon from low-density residential uses. As a result, impacts would be potentially less-than-significant.

Key View 2

Key View 2 is situated approximately 0.2-mile west of the proposed project site on Remington Road and provides a representative view of the College View Estates neighborhood that features primarily one-story residences on landscaped lots bordered by sidewalks and occasionally, by vegetated parkways (see Figure 4.1-12, Key Observation Viewpoint 2: Remington Road). While constructed at a similar scale, homes display a variety of exterior colors and a variety of landscape themes. While residential development visible from Key View 2 displays a consistent bulk and scale, the tall, vertical form of building wings associated with Chapultepec Hall rise above residences and neighborhood landscaping. Despite the presence of 11-story Chapultepec Hall in the view, the apparent scale of the building is reduced by distance and by the presence of tall and mature street trees, which tend to screen the lower floors for of the residence hall from view.

Due to the bulk and scale of Chapultepec Hall and the screening effect of trees in the foreground viewing distance, the proposed project buildings are not visible from Key View 2. From Key View 2, changes to the project site resulting from construction and operation of the project would not be evident. The new residence halls and food service building would be blocked from view by existing features in the landscape and, therefore, A visual simulation of the project as is included on Figure 4.1-12. As shown in the visual simulation, Phase I development and all but the roofs of Phase III residence halls would be obscured by Chapultepec Hall and by intervening development and landscaping within the College View Estates neighborhood. The Phase II residence tower would be visible and due to its tall rectangular form and closer proximity to Key View 2 when compared to existing Chapultepec Hall, the tower would be a prominent feature. Moreover_Phase II development would rise above existing residential development and create visible scale contrast. However, the architectural details of the residence tower would be visible and the familiar pattern of arched windows and lightly colored exteriors prevalent in the Spanish Colonial and Mission Revival styles displayed by existing SDSU campus buildings would be evident. Through incorporation of familiar architectural styles, the project would create a visual link between new development and existing on campus development constructed in similar styles. Further, the repeating rows of windows and straight, horizontal and vertical building lines of the new residence hall would generally mimic those of existing Chapultepec Hall. Still, the proposed scale of the Phase II development would be taller than the single-story residences occupying the immediate foreground of the Key View 2_and along with Chapultepec Hall, the Phase II residence tower would dominate the view. As a result, the Phase II residential tower would create moderate form contrasts and i the proposed project would not create detectable contrast from Key View 2. No impacts would be potentially significant occur.

Key View 3

Situated on Hewlett Drive and representative of existing views afforded to motorists and residents on Hewlett Drive, Key View 3 is located approximately 250 feet west of the project site (see Figure 4.1-10 for location). As shown in the Figure 4.1-13, Key Observation Viewpoint 3: Hewlett Drive existing conditions image, the immediate foreground of the view consists of single-family residences (1- and 2-story) on landscaped lots. A series of electrical distribution and communication lines are present and create dark straight and diagonal lines that are slightly chaotic. Landscaping on private property includes tall trees and shrubs and orderly hedges. Located approximately 500 feet away, the tall form, large and wide mass and straight lines of Chapultepec Hall command attention and the scale of the 11-story residence tower

strongly contrasts with the comparatively low, 1- to 2-story scale of single-family residential homes on Hewlett Drive.

A visual simulation of project development as would be experienced from Hewlett Drive is included on Figure 4.1-13. When viewed from Hewlett Drive, the proximity, bulk, and scale of the Phase III development would entirely screen aportion of the upper floors on the west exterior of the Phase I new residence hall development from viewwould be visible. The remaining portions of the westernmost Phase I component residence halls (and the remaining components of Phase I development food service building) would be blocked from view by residential structures and landscaping along Hewlett Drive. From Hewlett Drive, Phase Iproject development would not be visually prominent. As shown in Figure 4.1-13, the four-story residence hall would be noticeably shorter in stature than the adjacent 11-story Chapultepec Hall and would display a tan-colored exterior and red-tiled roof. While these materials are not featured in Chapultepec Hall, resulting contrast in color and materiality between the new and existing structures would be low and the buildings would be visually compatible. The new residences would display similar design characteristics as those of existing buildings in the campus core and dissimilar architectural elements in buildings is relatively common in the nearby adjacent buildings along 55th Street. Chapultepec Hall would be partially screened from view by Phase III development. As shown in the visual simulation, the tall, rectangular wings of Phase III residence towers and the form of the 14-story Phase II residential tower would create a high level of contrast in scale when viewed against existing residential development in the foreground. Phase II and Phase III development appear to reach into the obscured canyon that would buffer the proximate existing residential development. The buildings would be substantially taller than existing structures in the residential neighborhood_and would dominate the view. As project development would be partially screened from view at Key View 3 and visible elements would create low visual contrast when viewed alongside existing features in the landscape, a result, impacts associated with Phase II and Phase III development would be potentially less-than-significant.

Key View 4

As shown on **Figure 4.1-10**, Key View 4 is located on 55th Street approximately 160 feet east of the project site. The view is oriented to the west and looks along the 55th Street and Remington Road corridor and towards existing Chapultepec Hall. From Key View 4, Chapultepec Hall is partially obscured by as small cluster of eucalyptus trees located along the southern boundary of Parking Lot 9 (see **Figure 4.1-14**, **Key Observation Viewpoint 4: 55th Street**). In addition to these features, telephone poles, streetlights, and occasionally, street trees, mark the 55th

Street/Remington Road corridor. While Chapultepec Hall is the only visible building in the Key View 4 landscape presented on **Figure 4.1-14**, the Aztec Recreation Center is located 50 feet to the east and the SDSU Public Safety building is located 150 feet to the south.

From Key View 4, the <u>new Phase I food service building and</u> residence halls would line the Remington Road corridor and would introduce buildings to a site currently occupied by a surface parking lot and perimeter landscaping. Further and as depicted on **Figure 4.1-14**, the project would entail the implementation of the proposed landscape plan that, as viewed from Key View 4, would create a consistent landscape theme along the Remington Road corridor. Although the <u>Phase Iproject</u> site currently does not support buildings, the removal of vegetation and introduction of residential halls and the proposed food service building would overall produce moderately low visual contrast in the landscape. In addition to contributing to a cohesive landscape theme through the repetition of existing planting materials along the Remington Road corridor, <u>Phase I project</u> development would display a form and scale that would be compatible with existing 11-story Chapultepec Hall. Moreover, the sequencing of building scale along the corridor from the <u>Phase I development project</u> site to Chapultepec Hall would be gradual as the apparent scale of the existing building would be comparable to the new residence halls and food service building.

The sequence of building scale from Chapultepec Hall to the Phase II residence hall would be steady, as building scale would continue to increase from east to west. Due to the proximity of Phase I development and the presence of Chapultepec Hall, the Phase III residence towers would be entirely obscured from view at Key View 4. While Phase I development would create low visual contrast as viewed from Key View 4, the proposed scale of Phase II development would create moderate form contrast but due to distance and the presence of tall structures and vegetation in the foreground, the proposed 14 story building would not dominate the scene. Also, given the lack of low profile structures and uses in the landscape, overall contrast associated with the introduction of the 14 story building would be softened. As viewed from Key View 4, the built environment would appear to gradually increase in scale from east to west and would display a consistent architectural style and tone. Therefore, when experienced from Key View 4, Phase I and Phase IIproject development would not substantially degrade the existing visual character or quality of the site and its surroundings. Impacts would be less-than-significant.

Key Views Impact Summary

Given the impacts described above under General Visual Character and the potentially significant aesthetic impacts associated with the implementation of proposed project elements

as experienced at Key Views 1, 2, and 3, the project (and more specifically, Phase II and Phase III development) would substantially degrade the existing visual character or quality of the site and its surroundings. The architectural style proposed for the residence halls and food service building that are part of Phase Iproject development would generally be consistent with the existing campus structures designed in the Spanish Colonial, and Mission Revival styles. Where visible and not obscured by existing visual elements, the bulk and scale of the four- to five-story residence hall buildings and two-story food service building would also be compatible with the bulk and scale of existing on- and off-campus development in the project area. The tall and broad Phase II building would be located near single-family residences in the College View Estates neighborhood, however, it would also be located adjacent to Chapultepec Hall, an existing on-campus building of comparable scale. Through repetition of familiar building scale, use of tall, rectangular forms, and inclusion of wide expanses of repeating elements (i.e., windows), the Phase II residential building the new development would be compatible with existing and nearby on-campus structures. As demonstrated in the key view analysis, the inclusion of the tall and broad Phase II development would create noticeable scale contrast with residential structures in the College View Estates neighborhood. However, the presence of tall and broad Chapultepec Hall has altered the character and quality of the surrounding area landscape and lessens the impact associated with the introduction of a building of comparable scale on an adjacent site: ; however, the bulk and scale of Phase II and Phase III development would generally create strong form and line contrast in the landscape. As a result, operation of the proposed project's Phase II and Phase III development would result in potentially less-thansignificant impacts to the existing visual character or quality of the site and its surroundings.

Shading

For purposes of this analysis, a significant shading impact would occur if shadow-sensitive use areas (where sunlight is important to its function) would be shaded by project-related structures for more than three hours between the hours of 9:00 a.m. and 3:00 p.m. Pacific Standard Time (between late October and early April), or for more than four hours between the hours of 9:00 a.m. and 5:00 p.m. Pacific Daylight Time (between early April and late October). A description of shadow conditions associated with existing development on the proposed project site is provided in Section 4.1.1.4, above. As further discussed in Appendix B, existing shadow conditions were documented at receptor site locations surrounding the project site to comprehensively define the range of existing shadow conditions. Receptor sites are utilized to evaluate the maximum potential impacts that may result from shadow onto residential properties and sensitive sites surrounding the proposed project site to the north, east, south,

and west. The receptor site locations are within close proximity of project development, have views of the project site, and are considered existing residential use properties or may be located adjacent to existing residential use properties. The existing viewing and shading conditions at the receptor site locations are summarized below in **Table 4.1-2**.

Table 4.1-2
Receptor Sites: Existing Viewing Conditions to Project Site and Daily Shadows

Receptor	Proximity to Project Site	Viewing Conditions	Shadow Conditions
R-W1 ¹	Within project boundary (i.e., at western extent of Parking Lot 10A) 1	Direct view of project site to the east with no obstructions.	Early morning shadow from existing building on project site and trees to the east
R-W2 ²	Within western extent of project boundary2	Direct view of project site to the east with obstructions from tall trees.	Early morning shadow from existing building on project site and trees to the east
R-W3	Approximately 230 feet west of Project Site near 5417 Hewlett Drive	Direct view of project site to the east with obstructions from trees.	Early morning shadow from existing building on project site and trees to the east
R-W4	Approximately 100 feet west of Project Site near 5441 Hewlett Drive	Direct view of project site to the east with obstructions from trees.	Early morning shadow from existing building on project site and trees to the east
R-E1	Immediately north of project boundary in College View Apartment	Direct view of project site to the west with no obstructions.	Late afternoon shadow from existing building on project site and trees to the east

Notes:

- While located within the project boundary, R-W1 is adjacent to the residential property line at 5312 Remington Road immediately west of Parking Lot 10A. Viewing and shadow condition at this location approximate conditions at the adjacent residential property.
- While located within the project boundary, R-W2 is adjacent to the residential property line located at 5312 Remington Road. Viewing and shadow condition at this location approximate conditions at the adjacent residential property.

The analysis below summarizes the results of the calculations (0 indicates no shading, and 1 indicates full shading) for each hour of the day on December 21 (i.e., the Winter Solstice), June 21 (i.e., the Summer Solstice), and for the calendar year. On June 21, the least extent of shading conditions for the calendar year generally occurs. On March 21, the Spring Equinox, and September 21, the Fall Equinox, the path of the sun is aligned with the equator. On these two dates the length of the day and the altitude of the sun in the sky is midway between the minimum altitude and duration on December 21, and the maximum altitude and duration on June 21. Shadows created on these two dates represent the mean of the range of both length of the shadows and the time duration of the shadow.

<u>Shading Conditions on December 21 – Winter Solstice</u>

Table 4.1-3, below, summarizes the results of the existing shading calculations (0 indicates no shading, and 1 indicates full shading) for each daytime hour of the day on December 21, the Winter Solstice. Grey table cells indicate that shadow is received at the Receptor Site.

Table 4.1-3
Existing Shading, Winter Solstice (December 21)

		Е	xisting Ex	tent of	Shadov			
	9:00	10:00	11:00	12:00	1:00	2:00	3:00	
Receptor	a.m.	a.m.	a.m.	p.m.	p.m.	p.m.	p.m.	Analysis
R-W1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	No shading from Chapultepec Hall and project site between 9:00 a.m. and 3:00 p.m.
R-W2	0.0	0.0	0.0	0.0	0.0	1.0	1.0	No morning shading from Chapultepec Hall and project site after 9:00 a.m. Afternoon shading from non-project site topography to the west
R-W3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	No shading from Chapultepec Hall and project site between 9:00 a.m. and 3:00 p.m.
R-W4	1.0	0.0	0.0	0.0	0.0	0.0	1.0	Limited morning shading from Chapultepec Hall and project site. Afternoon shading from non-project site topography to the west
R-E1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	No shading from Chapultepec Hall and project site between 9:00 a.m. and 3:00 p.m.

Source: Appendix B

In summary, the existing 11-story Chapultepec Hall casts limited morning shadow onto the properties along Hewlett Drive. More specifically, the existing hall casts shadow on Receptor Site R-W4 for one hour for 9:00 a.m. to 10:00 a.m. but does not cast shadow on the other receptor sites after 9:00 a.m. **Figures 4.1-15a and 4.1-15b, Existing Shadow Conditions – Winter Solstice** illustrate the angle and length of shadow cast throughout the day under existing conditions on December 21. As depicted in the figures, morning shadow cast by Chapultepec Hall moves to the east of the residential properties on Hewlett Drive by 10 a.m. These receptors also experience shading in the afternoon but afternoon shading is caused by the existing topography.

Table 4.1-4, below, summarizes the results of the proposed shading calculations (0 indicates no shading, and 1 indicates full shading) for each daytime hour of the day on December 21, the Winter Solstice. Within **Table 4.1-4**, the tan table cells indicate increased shading hours as compared to the existing shading conditions on December 21 presented in **Table 4.1-3** above.

Table 4.1-4
Proposed Shading, Winter Solstice (December 21)

		Pro	posed I	Extent o	f Shado	ow		
Receptor	9:00 a.m.	10:00 a.m.	11:00 a.m.	12:00 p.m.	1:00 p.m.	2:00 p.m.	3:00 p.m.	Analysis
R-W1	<u>1.00.0</u>	0.0	0.0	0.0	0.0	0.0	0.0	Morning No shading from project between 9:00 a.m. and 10:00 a.m. No afternoon shading between 12:00 p.m. and 3:00 p.m.
R-W2	<u>1.00.0</u>	<u>1.00.0</u>	0.0	0.0	0.0	1.0	1.0	Morning No shading from project between 9:00 a.m. and 443:00 ap.m. Afternoon shading from non-project site topography to the west.
R-W3	<u>1.00.0</u>	0.0	0.0	0.0	0.0	0.0	0.0	Morning-No shading from project between 9:00 a.m. and 10:00 a.m. No afternoon shading between 12:00 p.m. and 3:00 p.m.
R-W4	1.0	<u>1.00.0</u>	0.0	0.0	0.0	0.0	1.0	Morning shading from project Chapultepec Hall between 109:00 a.m. and 1110:00 a.m. Afternoon shading from non-project site topography to the west.
R-E1	0.0	0.0	0.0	0.0	<u>01</u> .0	<u>01</u> .0	1.0	No morning-shading from the project between after-9:00 a.m. and 1:00 p.m. Afternoon shading at southernmost building from project and topography to the west between 1:00 p.m. and 3:00 p.m.

Source: Appendix B

Due to the introduction of additional building bulk and scale to the project site, the angle and length of shadows cast by the proposed project would alter existing shadow conditions. As under existing conditions, shadows created by project development would be cast on properties to the west, north, and east of the project site. Anticipated shadow conditions resulting from implementation of the proposed project are illustrated on Figure 4.1-15c and 4.1-15d, Proposed Shadow Conditions – Winter Solstice. As noted in Table 4.1-4 and Figures 4.1-15c and 4.1-15d, there is <u>no</u> increased shading associated with <u>the proposed</u> project structures at Receptor Sites R-W1, R-W2, R-W3, and R-W4 from between 9:00 a.m. and 11:00 ap.m. Receptor Site R-W1 would experience one hour of increased shading on December 21 (and throughout the months of December, January, and February) from 9:00 a.m. to 10:00 a.m. R-W2 would experience two hours of increased shading on December 21 (and throughout the months of December, January, and February) between 9:00 a.m. and 11:00 a.m. Increased shading would occur at R-W3 on December 21 and each morning between 9:00 a.m. and 10 a.m. during the months of December and January. Increased shading would also occur at R-W4 on December 21 (and through the month of December) from 10:00 a.m. to 11:00 a.m. but new shading would not occur during January and February. Receptor Site R-E1, which is the receptor site corresponding to the site located north of the proposed project, experiences increased late afternoon shading from project development only from 3-1 p.m. to 4:00 p.m. Receptor Sites R-W1, R-W2, R-W3, and R-W4

experience afternoon shading from topography to the west of the project site. The maximum increase in shading time on December 21 from the project is two hours (9:00 a.m. to 11:00 a.m.) at Receptors Site R-W2.

Therefore, new shading associated with operation of the proposed project would not shade shadow-sensitive uses for more than 3 hours between the hours of 9:00 a.m. and 3:00 p.m. Pacific Standard Time (between late October and early April) and would be **less-than-significant**.

Shading Conditions on June 21 – Summer Solstice

Table 4.1-5, below, summarizes the results of the existing shading calculations (0 indicates no shading, and 1 indicates full shading) for each daytime hour of the day on June 21, the Summer Solstice.

Table 4.1-5
Existing Shading, Summer Solstice (June 21)

			Exis	ting Ext	tent of	Shadov	v				
Docombon	9:00	10:00	11:00	12:00	1:00	2:00	3:00	4:00	5:00	A m a 1	
Receptor	a.m.	a.m.	a.m.	p.m.	p.m.	p.m.	p.m.	p.m.	p.m.	Analysis	
R-W1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	No shading from Chapultepec Hall and project site from 9:00 a.m. to 5:00 p.m.	
R-W2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	No shading from Chapultepec Hall and project site from 9:00 a.m. to 5:00 p.m.	
R-W3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	No shading from Chapultepec Hall and project site from 9:00 a.m. to 5:00 p.m.	
R-W4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	No shading from Chapultepec Hall and project site from 9:00 a.m. to 5:00 p.m.	
R-E1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	No shading from Chapultepec Hall and project site from 9:00 a.m. to 5:00 p.m.	

Source: Appendix B

Figures 4.1-16a and 4.1-16b, Existing Shadow Conditions – Summer Solstice illustrate the angle and length of shadow cast throughout the day under existing conditions on June 21. As shown in Table 4.1-5 above and Figures 4.1-16a and 4.1-16b, the existing buildings within the proposed project site including Chapultepec Hall do not cast shadow onto the Receptor Sites between the hours of 9:00 a.m. and 5:00 p.m. on June 21.

Table 4.1-6, below, summarizes the results of the proposed shading calculations (0 indicates no shading, and 1 indicates full shading) for each daytime hour of the day on June 21, the Summer Solstice. In Table 4.1-6, the tan table cells indicate increased shading hours as compared to the existing shading conditions on June 21 presented in Table 4 above.

Table 4.1-6
Proposed Shading, Summer Solstice (June 21)

			Prop	osed Ex	tent of	Shado	w			
Description	9:00	10:00	11:00	12:00	1:00	2:00	3:00	4:00	5:00	A1!-
Receptor	a.m.	a.m.	a.m.	p.m.	p.m.	p.m.	p.m.	p.m.	p.m.	Analysis
R-W1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	No shading from project
										from 9:00 a.m. to 5:00 p.m.
R-W2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	No shading from project
										from 9:00 a.m. to 5:00 p.m.
R-W3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	No shading from project
										from 9:00 a.m. to 5:00 p.m.
R-W4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	No shading from project
										from 9:00 a.m. to 5:00 p.m.
R-E1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	No shading from project
										from 9:00 a.m. to 5:00 p.m.

Source: Appendix B

Anticipated shadow conditions on June 21 resulting from implementation of the proposed project are illustrated on **Figures 4.1-16c and 4.1-16d, Proposed Shadow Conditions – Summer Solstice**. As demonstrated in Table 4.1-6 and Figures 4.1-16c and 4.1-16d, the proposed project would not shade shadow-sensitive uses between the hours of 9:00 a.m. and 5:00 p.m. on June 21. Because the project would not cast shade shadow-sensitive uses for more than 4 hours between the hours of 9:00 a.m. and 5:00 p.m. on June 21, impacts would be **less-than-significant**.

Shading Conditions on March 21 and September 21 – Spring and Fall Equinox

Table 4.1-7, below, summarizes the results of the existing shading calculations (0 indicates no shading, and 1 indicates full shading) for each daytime hour of the day on March 21, the Spring Equinox. Because similar shading conditions are anticipated on the Fall Equinox (September 21), the Table 4.1-7 calculations are also applicable to the Fall Equinox.

Table 4.1-7
Existing Shading, Spring Equinox (March 21)

		E	xisting Ex	tent of	Shadov			
D	9:00	10:00	11:00	12:00	1:00	2:00	3:00	
Receptor	a.m.	a.m.	a.m.	p.m.	p.m.	p.m.	p.m.	Analysis
R-W1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	No shading from Chapultepec Hall and project site between 9:00 a.m. and 3:00 p.m.
R-W2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	No shading from Chapultepec Hall and project site between 9:00 a.m. and 3:00 p.m.
R-W3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	No shading from Chapultepec Hall and project site between 9:00 a.m. and 3:00 p.m.
R-W4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	No shading from Chapultepec Hall and project site between 9:00 a.m. and 3:00 p.m.
R-E1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	No shading from Chapultepec Hall and project site between 9:00 a.m. and 3:00 p.m.

Source: Appendix B

Figures 4.1-17a and 4.1-17b, Existing Shadow Conditions – Spring Equinox, illustrate the angle and length of shadow cast throughout the day under existing conditions on March 21 and September 21. As shown in Table 4.1-7 and Figures 4.1-17a and 4.1-17b, the existing buildings on the project site do not cast shadow on Receptor Sites between 9:00 a.m. and 3:00 p.m.

Table 4.1-8, below, summarizes the results of the proposed shading calculations (0 indicates no shading, and 1 indicates full shading) for each daytime hour of the day on March 21 (and September 21), the Spring (and Fall) Equinox. Tan table cells indicate increased shading hours as compared to the existing shading conditions on March 21 presented in Table 4.17 above.

Table 4.1-8
Proposed Shading, Spring Equinox (March 21)

		Pr	oposed Ex	ctent of	Shado			
D .	9:00	10:00	11:00	12:00	1:00	2:00	3:00	
Receptor	a.m.	a.m.	a.m.	p.m.	p.m.	p.m.	p.m.	Analysis
R-W1	<u>10</u> .0	0.0	0.0	0.0	0.0	0.0	0.0	Morning No shading from project between from 9:00 a.m. to 10:00 a.m. No shading from project
R-W2	<u>10</u> .0	0.0	0.0	0.0	0.0	0.0	0.0	between 10:00 a.mand 3:00 p.m. Merning-No_shading from project from between 9:00 a.m. to 10:00 a.m. No shading from project between 10:00 a.mand 3:00 p.m.
R-W3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	No shading from project between 9:00 a.m. and 3:00 p.m.
R-W4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	No shading from project between 9:00 a.m. and 3:00 p.m.

Table 4.1-8
Proposed Shading, Spring Equinox (March 21)

		Pr	oposed Ex	xtent of	Shado			
	9:00	10:00	11:00	12:00	1:00	2:00	3:00	
Receptor	a.m.	a.m.	a.m.	p.m.	p.m.	p.m.	p.m.	Analysis
R-E1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	No shading from project between 9:00 a.m. and 3:00 p.m.

Source: Appendix B

Anticipated shadow conditions on March 21 (and September 21) resulting from implementation of the proposed project are illustrated on Figures 4.1-17c and 4.1-17d, Proposed Shadow Conditions – Spring Equinox. As demonstrated in Table 4.1-8 and Figures 4.1-17c and 4.1-17d, implementation of the project would not result in on hour of increased shading at Receptor Sites R-W1 and R-W2 between 9:00 a.m. and 10:00 a.m. on March 21 and throughout the month of March. Project-related shading would not be received at these properties in the month of April. No other project-related shading would be experienced at Receptor Sites on March 21 between 9:00 a.m. and 3:00 p.m. and R-W3, R-W4, and R-E1 would not receive project-generated shade between 9:00 a.m. and 3:00 p.m. in the months of the March and April. Therefore, new shading associated with operation of the proposed project would not shade shadow-sensitive uses for more than 3 hours between the hours of 9:00 a.m. and 3:00 p.m. Pacific Standard Time (between late October and early April) and would be less-than-significant.

Would the project create a new source of substantial light or glare which would adversely affect day or nighttime views in the area?

Based on the regulatory requirements identified in Section 4.1.2 above, and IESNA definition of glare, the project would have a significant light or glare impact on a sensitive receptor (residential uses or commercial or institutional land uses that require minimal night time illumination) if:

- project lighting generates light emissions that produces a light intensity exceeding 0.74 foot-candles at the property line of a residence or other sensitive receptor; or
- project lighting creates new high contrast conditions (contrast ratio over 30:1) visible from a field of view from a residential use or other sensitive receptor.

Lighting

Construction of the proposed project would generally occur during daytime hours and would not typically require nighttime lighting. However, nighttime lighting necessary for security purposes may be installed on site and during winter months when hours of daylight are reduced, therefore portable construction lights may be used. Temporary, short-term lighting impacts associated with construction activities would be limited to these lighting sources. Sensitive receptors in the surrounding area potentially affected by nighttime construction lighting and susceptible to diminished nighttime views consist solely of nearby residents. More specifically, residential land uses are located to the west of the project site in the College View Estates neighborhood, to the north of the project site and north of I-8 in the community of Del Cerro, and along 55th Street to the east of the project site. Although nighttime lighting sources including interior lighting at Chapultepec Hall, parking lot lighting, street lighting, and field lighting are located on the project site and operate in the vicinity, the construction lighting could affect existing nighttime views in the project area and/or generate glare if not properly shielded and directed/focused onto construction areas.

However, as discussed in Section 4.1.2 above, SDSU's lighting policy voluntarily follows the adopted ordinances of the City of San Diego to reduce potential lighting impacts on astronomical research occurring at the Palomar and Mount Laguna observatories. The City's outdoor lighting regulations require the use of shields and flat lenses to control and direct outdoor lighting and on properties adjacent to sensitive biological resources, the City requires that lighting be limited to low-levels and shielded to minimize the amount of light trespass, (see Chapter 14, Article 142.0740 (c) Outdoor Lighting Regulations). Because use of lighting during construction would comply with City of San Diego outdoor lighting regulations that require methods to control and direct outdoor lighting as a means to minimize light trespass, use of lighting on the project site during construction would not adversely affect nighttime views in the area. Impacts would be **less-than-significant**.

A description of nighttime lighting conditions associated with existing development on the project site is provided in Section 4.1.1, above. As further discussed in **Appendix B**, existing nighttime lighting conditions were documented at receptor site locations surrounding the project site to comprehensively define the range of existing lighting conditions and views from the surrounding properties and streets to the project site. Illuminance (fc) and luminance (cd/m²) were measured at each Receptor Site in accordance with the procedures outlined in the Shading Technical Report for the SDSU New Student Housing Project (Appendix B). Views of the project site from the adjacent streets are evaluated to determine the visibility of the proposed project site and the surrounding lighting conditions.

The illuminance listed in Table 4.1-9 below summarize the measured illuminance at the receptor sites in the project vicinity. The measured illuminance data are consistent with an urban

lighting condition, with relatively high illuminance at the street and sidewalk within the public right of way, and high illuminance within the private properties for safety and security. Further, many of the adjacent commercial properties include illuminated signs that contribute to a relatively bright night environment.

Table 4.1- 9
Summary of Existing Illuminance Measurements at Receptor Sites

	Illuminance (f	ootcandles; fc)	
Receptor2	Horizontal 1	Vertical ¹	Analysis
R-W1	0.341	0.103	Low illuminance from adjacent parking lot lighting, measured at the north edge of Parking Lot 10A, within the western region of the Project site.
R-W2	0.015	0.180	Low illuminance, measured in the canyon near residential property line at 5312 Remington Road, west Project site property line.
R-W3	0.243	0.062	Low Illuminance, measured at 5417 Hewlett Drive west of the Project site west property line, within the Hewlett Drive right-of-way.
R-W4	0.017	0.039	Low Illuminance, measured at 5441 Hewlett Drive rear patio west of the Project site west property line
R-E1	0.351	-	Moderate illuminance, measured at parking area of 5429 55th Street, east of the Project Site.

Source: Appendix B

Notes:

New interior and exterior lighting would be introduced to the proposed project site by project development. In addition to interior building lighting and exterior building lighting installed

Horizontal Illuminance measurements are recorded with the light meter held horizontally and the sensor at 180 degrees to the nadir at 3 feet above grade. Vertical illuminance measurements are recorded with the light meter in the vertical position and the sensor located 90 degrees from nadir at 3 feet above grade. For the proposed project, the vertical illuminance data is presented to identify the sum of all existing illuminance at the receptor sites from the direction of the proposed project site. The existing lights at the proposed project site and at the surrounding streets vary in height from grade mounted flood lights to medium height light poles at approximately 25 feet above grade. This range of variation in height produces an angle of incidence to the light meter of less than 10 degrees for receptor sites at 125 feet from the proposed project site and less than 5 degrees at distances above 300 feet. Because of these conditions, the vertical illuminance measurements are used in Appendix B to summarize incident illuminance at the receptor sites and is a more conservative measurement than perpendicular illuminance data.

² Receptor sites are identified on Figures 4.1-15a through 4.1-17d

for security and general illumination purposes, new lighting fixtures and elements would be provided for the proposed plaza and courtyard areas, arcades, pedestrian walkways, recreation areas, and other outdoor common areas.

The light trespass from the Project Lighting is evaluated by calculating illuminance (fc) at the Receptor Site locations. The resulting illuminance from the project lighting is presented in Table 4.1-10. The results of the analysis demonstrate that light trespass associated with the operation of project lighting would be below the significance threshold of 0.74-fc. In addition, it should be noted that project lighting must conform to the requirements of CALGreen, which stipulates the light from project building and general site lighting must not exceed 0.74-fc at the project boundary, which for purposes of this analysis, is identified as the adjacent property line to the west, south, east, and north of the project site. Vertical planes W1, W2, W3, W4, E1, and E2 are located at the adjacent property line to present the calculated illuminance from the project lighting (see Table 4.1-10, below). While these vertical planes are substantially closer to the proposed project site than the sensitive residential receptor locations, the applicable threshold requires a project to demonstrate that lighting levels at the project boundary do not exceed 0.74-fc.

The calculations for Project Lighting illuminance include the lighting equipment required to provide the appropriate illumination for this facility, which would be designed to provide site and interior lighting as required by code and by best practice.

Building Lighting must comply with the light trespass limits stipulated by CALGreen, and will therefore require a method to restrict reflected light from the proposed project to illuminance less than 0.74-fc at the vertical planes. If necessary to meet light trespass limits, methods to limit the illuminance at vertical planes may include lights directed away from the adjacent property lines, architectural shading structures, vertical louvers, shading systems deployed while the lights are active, or addition of an architectural screen to further shield the light from a project.

The summary of the illuminance calculations data is presented below in Table 4.1-10, which shows that all lighting levels (as measured at receptor sites), would be below the CEQA significance threshold, therefore resulting in a **less-than-significant impact**.

Table 4.1-10
Summary of Proposed Illuminance Measurements at Receptor Sites

	Threshold	Proje	ct Illuminanc	e (Ev (fc))	
Receptor	Ev (fc)1	Maximum	Minimum	Average	Analysis
R-W1	0.74	0.10	0.00	0.02	Below Threshold
R-W2	0.74	0.20	0.00	0.09	Below Threshold
R-W3	0.74	0.60	0.10	0.22	Below Threshold
R-W4	0.74	0.50	0.00	0.13	Below Threshold
R-E1	0.74	0.70	0.00	0.15	Below Threshold
R-E2	0.74	0.50	0.00	0.20	Below Threshold

Source: Appendix B

Notes:

Incident light (fc) from a source degrades in proportion to the inverse square of the distance from the source to the location where lighting is under review. The illuminance Ev (fc) incident at any given distance D (ft) from an illuminated surface S (ft2) with uniform surface luminance of L (cd/m2) is calculated by the following formula:

$$Ev = \underline{L \times S}$$

$$10.76 \times D2$$

This formula illustrates the reduction in illuminance at any location as the distance increases from a source surface. The largest area light sources produce the greatest distance from the project where the illuminance will be equal to or greater than 0.74 footcandles.

Glare

Glare is visual discomfort experienced from high luminance or high range of luminance. For exterior environments at night, glare occurs when the range of luminance in a visual field is too large. The light energy incident at a point is measured by a scale of footcandles or lux, and is described in the technical term Illuminance. This incident light is not visible to the eye until it is reflected from a surface, such as pavement, wall, dust in the atmosphere or the surface of a light bulb.

As further discussed in Appendix B, existing nighttime lighting conditions were documented at receptor site locations surrounding the project site to comprehensively define the range of existing glare conditions and views from the surrounding properties and streets to the project site. The visual evaluation of High, Medium and Low Contrast describes the perception of how bright a visible object appears to the surrounding objects within any given field of view and context. High Contrast indicates a potential glare condition for residential use receptor sites. **Table 4.1-11** below summarizes the measured luminance at each Receptor site along with qualitative descriptions of the existing conditions. The qualitative summary includes notations regarding the brightness of visible light sources and surrounding illuminated surfaces within

the field of view to the proposed project site from the Receptor sites. As detailed below in **Table 4.1-11**, receptors near the project site are currently exposed to high contrast/glare conditions during nighttime hours that are generated by existing lighting on the project site (interior lighting, parking lot lighting), and off-site sports field and parking lot lighting.

Table 4.1-11
Summary of Existing Luminance and Glare

	Lumi	nance	Contrast Ratio ¹	
Receptor	Average	Maximum	(Max/Average)	Analysis
R-W1	3.82	2043.06	534.4:1	High Contrast/Glare from existing lights within the project site and sports field (i.e., Tony Gwynn Stadium) and parking lights in the background. Direct view of project site to the east with no obstructions.
R-W2	3.81	823.80	216.1:1	High Contrast/Glare from existing lights within the project site and existing parking lot and sports field lights in the background. Direct view of project site to the east with obstructions from trees.
R-W3	0.89	389.80	439.1:1	High Contrast/Glare from existing site and building lighting within the project site. Direct view of project site to the east with obstructions from trees.
R-W4	8.39	827.30	98.6:1	High Contrast/Glare from existing lighting within the project site and parking and security lights in the distance at 55th Street. Direct view of project site to the east with some obstructions from trees.
R-E1	3.22	1724.00	534.7:1	High Contrast/Glare from existing site and building lighting within the project site and sports field and parking lighting in the background. Direct view of project site to the west.

Source: Appendix B

Project lighting would be visible from the residential Receptor Sites to the west, north west, and northeast of the project site. The requirements defined in California Green Building Standards

For residential occupancies at night, "High," "Medium," and "Low" contrast are terms used to describe effect of the contrast ratios (the ratio of peak measured luminance to the average within a field of view) of greater than 30:1, between 10:1 and 30:1, and below 10:1, respectively. Contrast ratios above 30:1 are generally uncomfortable for the human eye to perceive and may present an unacceptable condition for relaxation and enjoyment of a residence.

Code (Title 24, Part 11), Table 5.106.8, for Lighting Zone 2, stipulates backlight, uplight, and glare requirements for all exterior lighting to reduce the brightness visible from adjacent properties. For Zone 2, the maximum allowable glare ratings is G2, which allows up to 375 zonal lumens. The 375 lumen maximum light output is comparable to an approximately 30 cd/m2 surface luminance for a light source area approaching 1 m2. To provide a conservative analysis a maximum permitted Project Lighting luminance of 60 cd/m2 is used in the Contrast Ratio Glare analysis. The Contrast Ratio of the Project Lighting to the average measured existing luminance is presented in Table 4.1-12 below, which indicates extremely low contrast ratios (i.e., below 10:1), and no new sources of glare. Further, due to the bulk and scale of project structures, existing sources of glare, including sports field lighting, would be blocked from receptor sites located to the west of the proposed project site. As such and based on the calculations in the Shading Technical Report, glare impacts associated with operation of proposed project lighting would be **less than significant** (**Appendix B**).

Table 4.1-12
Project Lighting Luminance (cd/m²) – Analysis of Existing Conditions and Project Lighting

			Measured	Project Lighting Luminance (cd/m2)	Contrast Ratio (Project	
Receptor	Description	Average	Maximum	Maximum	Max/Existing Average)	Analysis
R-W1	roadway; commercial adjacent	306	1900	60	0.2:1	Low Contrast, No Glare
R-W2	residential adjacent	615	2937	60	0.1:1	Low Contrast, No Glare
R-W3	roadway; residential adjacent	57	330	60	1.0:1	Low Contrast, No Glare
R-W4	residential adjacent	176	1541	60	0.3:1	Low Contrast, No Glare
R-E1	roadway; residential adjacent	87	498	60	0.7:1	Low Contrast, No Glare

Source: Appendix B

Further, with the exception of glass windows, the architectural design of the proposed project would not use reflective building materials such as stainless steel. The Spanish Colonial and

Mission Revival styles generally consists of non-reflective exterior surfaces and finishes and are not known for incorporating large expanses of glass or metal exteriors. Additionally, the proposed project would be required to demonstrate compliance with SDSU's Physical Master Plan to ensure structures would not contain large expanses of reflective glass or reflective metal surfaces that would cause undue glare to passing mobile viewers and/or present a visual hazard to adjacent land uses during construction or permanently. With considerations of architectural building materials and implementation of associated regulations, impacts related to glare would be **less than significant**.

4.1.7 MITIGATION MEASURES

Conventional mitigation measures, such as the installation of trees to obscure the buildings and reduce the potential visual impacts, would not be effective in this case due to the height of the buildings. A reduction in the height of Phase II development to mimic the height, bulk, and scale of adjacent Chapultepec Hall would address the high level of change caused by the introduction of the Phase II residence hall and the single-family residences buffered by the canyon and reduce impacts to less than significant. Similarly, a redesign of Phase III development also would be necessary to reduce potential impacts to a less than significant level. Therefore, other than project redesign to reduce the height of the Phase II and Phase III buildings, there are no feasible mitigation measures that would reduce anticipated impacts to existing visual character and quality of the site and surroundings to a less than significant levelImpacts would be less than significant and, therefore, no mitigation measures are required.

4.1.8 LEVEL OF SIGNIFICANCE AFTER MITIGATION

As discussed above, impacts to scenic vistas were determined to be less than significant and as such, no mitigation measures are required.

Impacts to scenic resources within a state scenic highway would be less than significant and, as such, no mitigation measures are required.

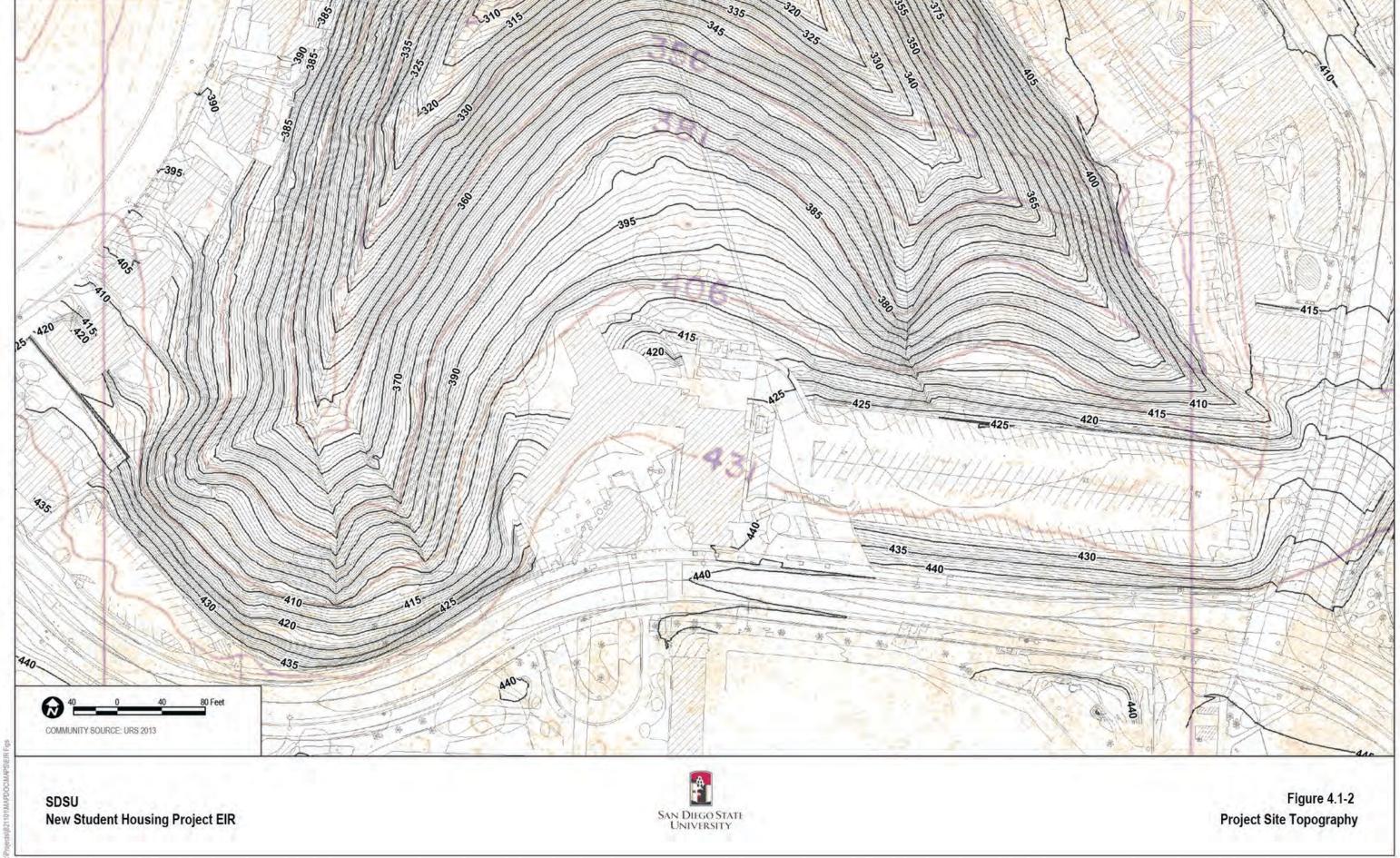
Impacts to existing visual character and quality would be less than significant and, as such, no mitigation measures are required.

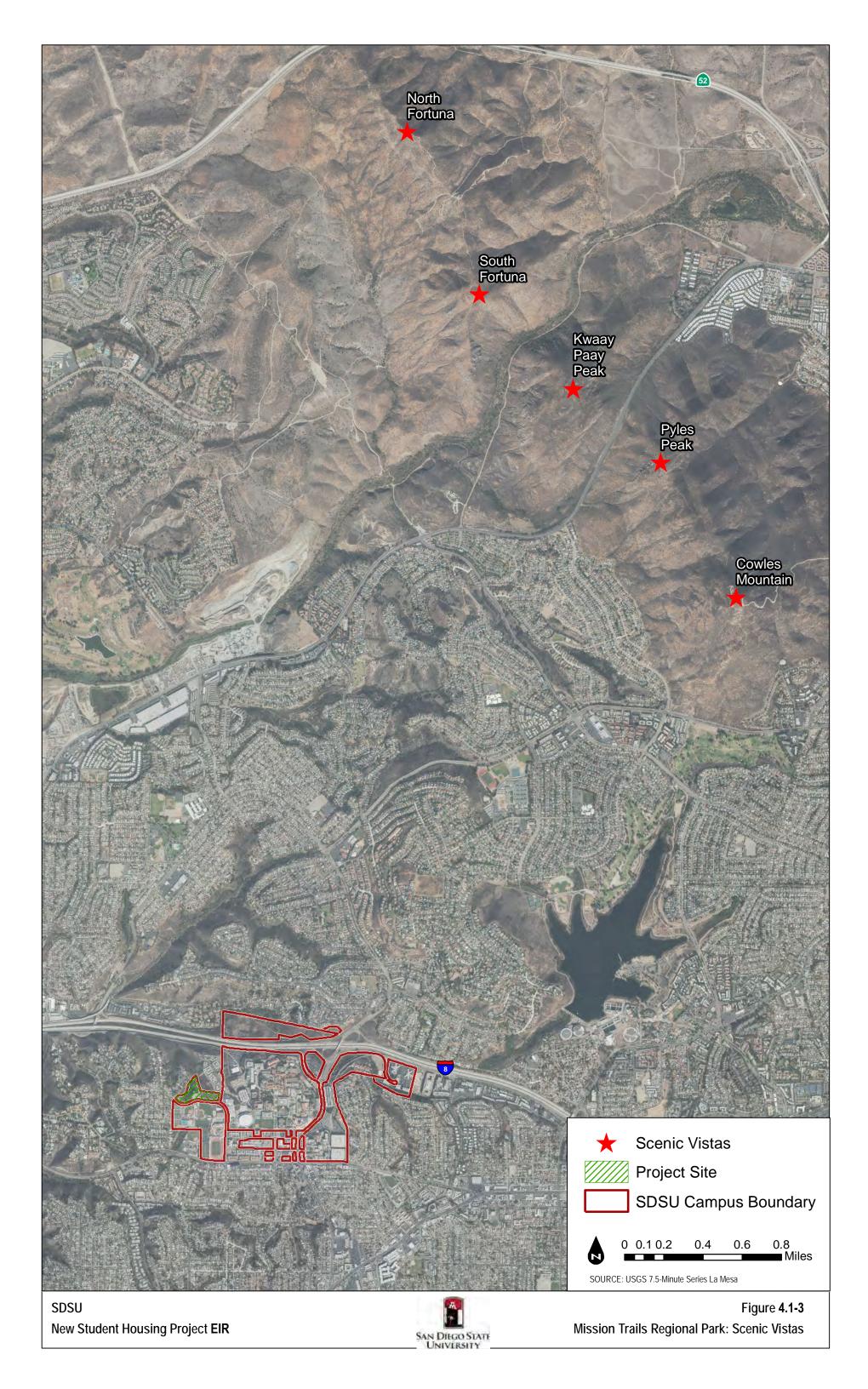
As explained above, other than redesign of the proposed project, there are no feasible mitigation measures available that would reduce potential impacts to existing visual character and quality of the site and surroundings associated with Phase II and Phase III development to a less than significant level. Therefore, impacts to existing visual character and quality associated with

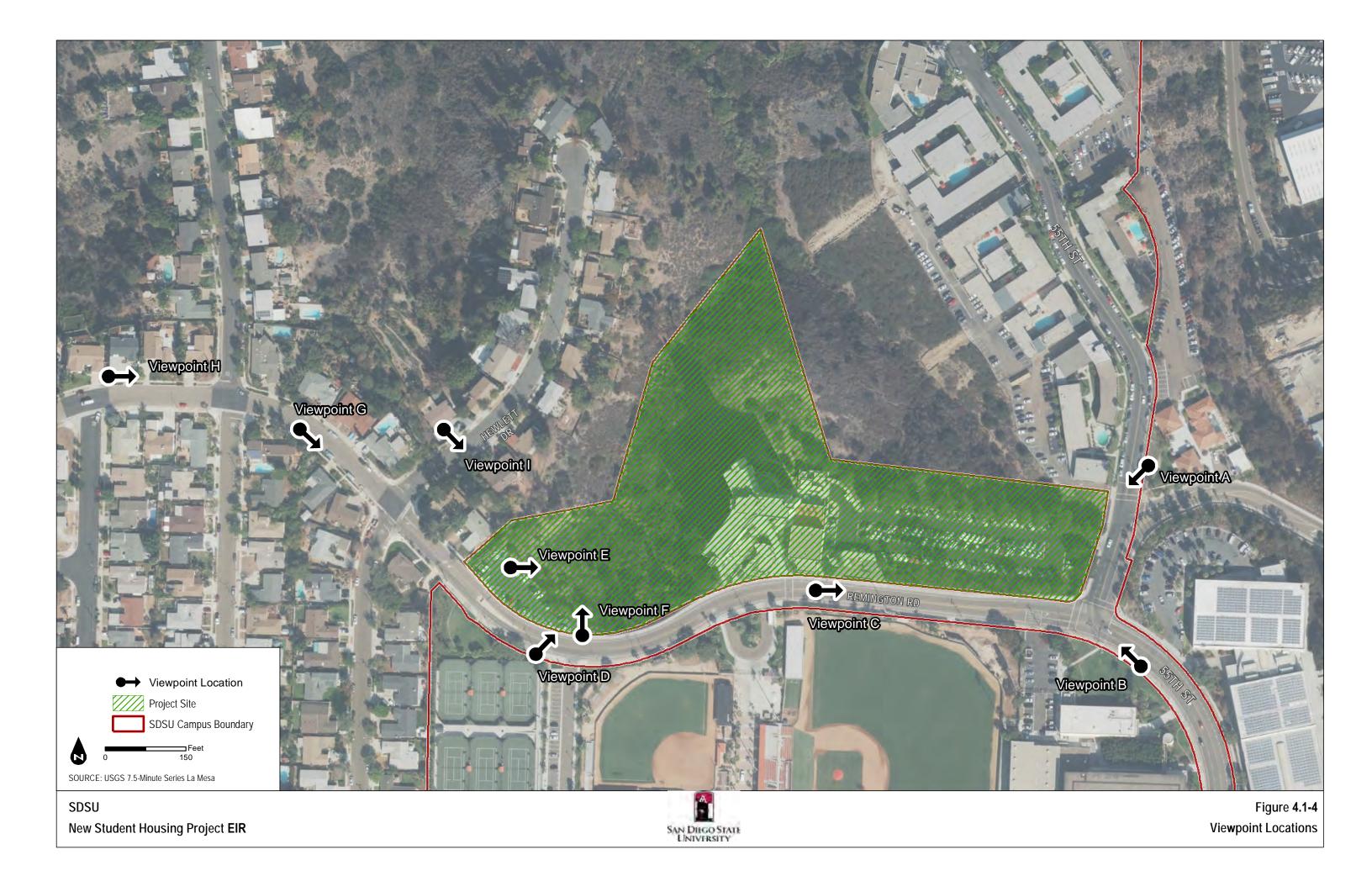
Phase II and Phase III would be significant and unavoidable. As to Phase I, impacts to existing visual character and quality associated with Phase I development would be less than significant and, therefore, no mitigation measures are required.

Impacts to shading and shadow would be less than significant and, as such, no mitigation measures are required.

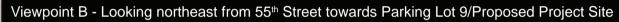
Impacts to day and nighttime views due to the introduction of new sources of substantial light and glare would be less than significant and, therefore, no mitigation measures are required.

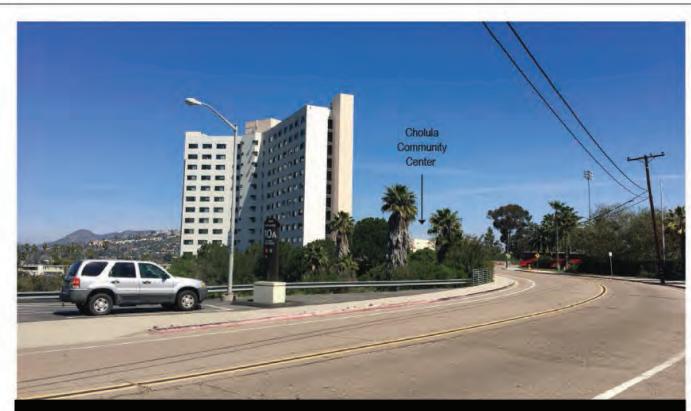

4.1.9 REFERENCES

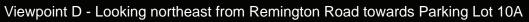

City and County of San Francisco. 2012. Environmental Review Guidelines.

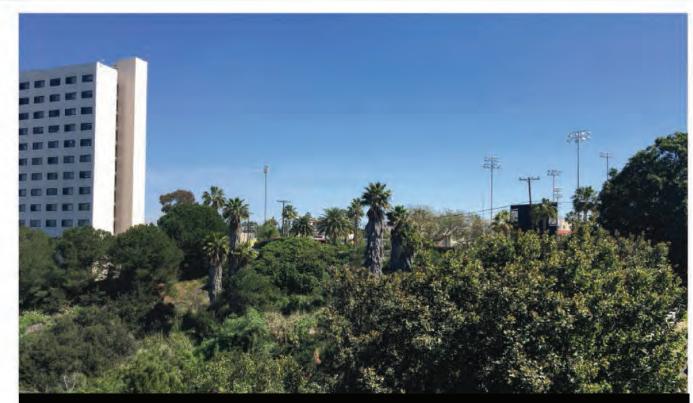

City of San Diego. 1989. College Area Community Plan.

- City of San Diego. 2015a. "Mission Trails Regional Park: Fortuna, Mission Gorge, Cowles Trail Map." Prepared by the City of San Diego Department of Park & Recreation, Open Space Division. January 25, 2016.
- City of San Diego. 2015b. "Official Zoning Map" [SanGIS]. 1:12,000. Zoning Grid Map. Grid Tile: 20. San Diego, California: City of San Diego. October 1, 2015. http://www.sandiego.gov/development-services/zoning/pdf/maps/grid20.pdf.
- City of Los Angeles. 2006. L.A. CEQA Thresholds Guide.
- Caltrans (California Department of Transportation). 2017. "California Scenic Highway Mapping System: San Diego County." Accessed March 20, 2017. http://www.dot.ca.gov/hq/LandArch/16_livability/scenic_highways/http://www.dot.ca.gov/hq/LandArch/16_livability/scenic_highways/.
- County of San Diego. 2009. Code of Regulatory Ordinances. Title 5 Regulation of Buildings, Mobilehome and Special Occupancy Parks and Trailer Coaches. Chapter 2, Light Pollution. http://www.sandiegocounty.gov/pds/docs/LightPollutionCode.pdf.
- Dudek. 2009. Visual Quality/Community Character Technical Report prepared for the San Diego State University Plaza Linda Verde Project.
- SDSU (San Diego State University). n.d. San Diego State University Physical Master Plan.

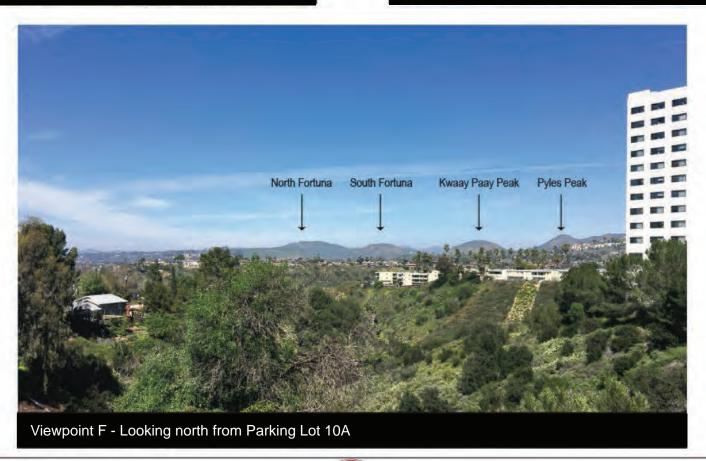








Source: DUDEK 2017



Viewpoint E - Looking east from Parking Lot 10A

Source: DUDEK 2017

Viewpoint H - Looking east from Remington Road (College View Estates Neighborhood) towards Chapultepec Hall

Source: DUDEK 2017

Existing View

Source: Carrier Johnson 2017

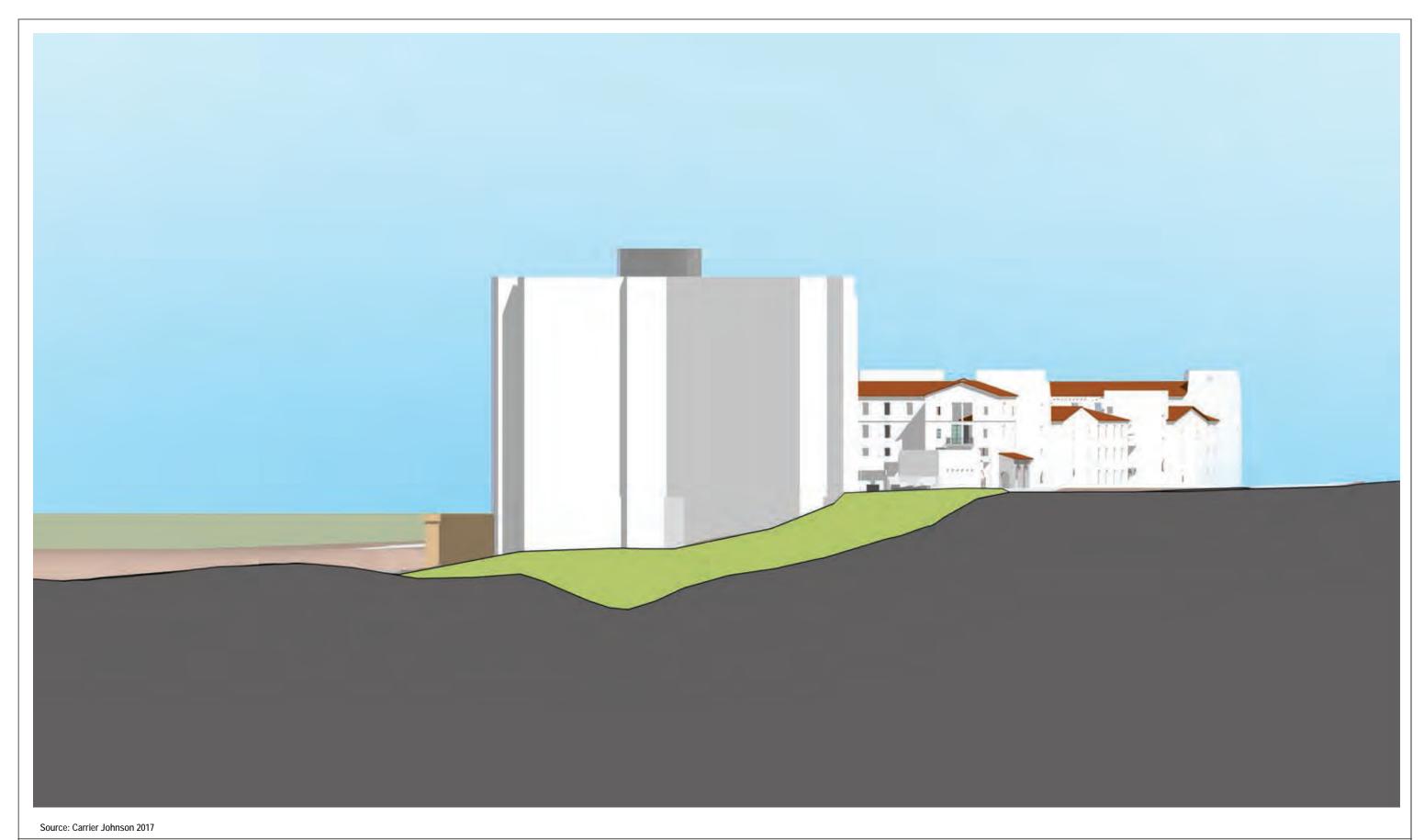
Existing View

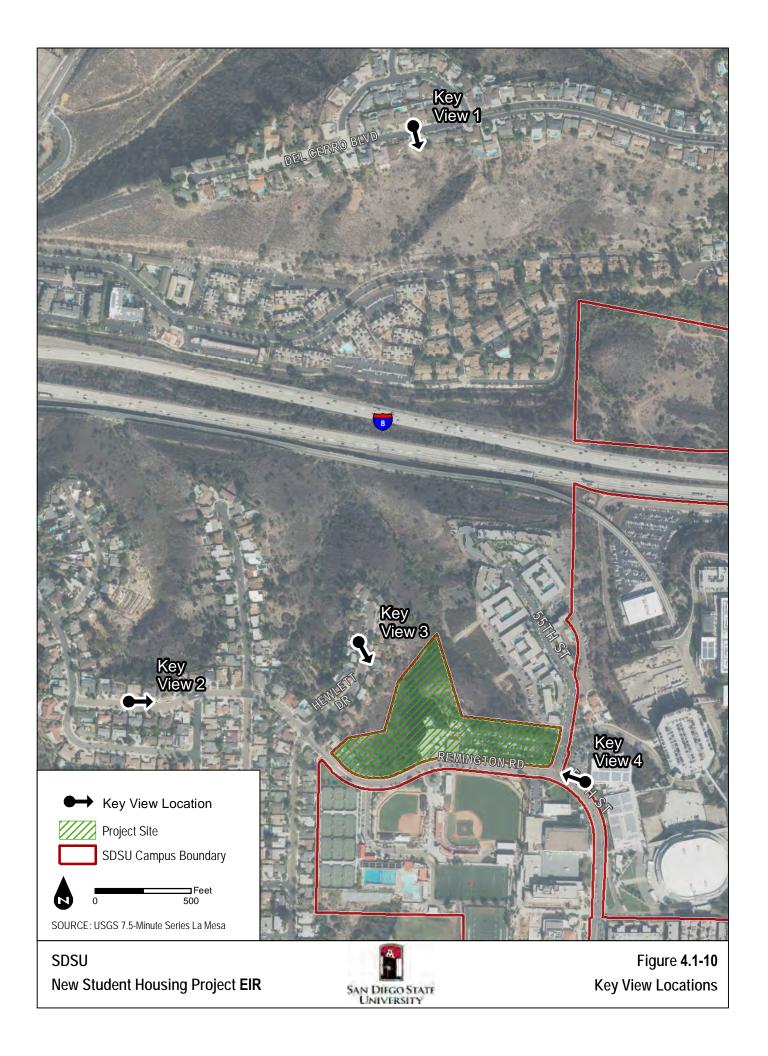
Source: Carrier Johnson 2017

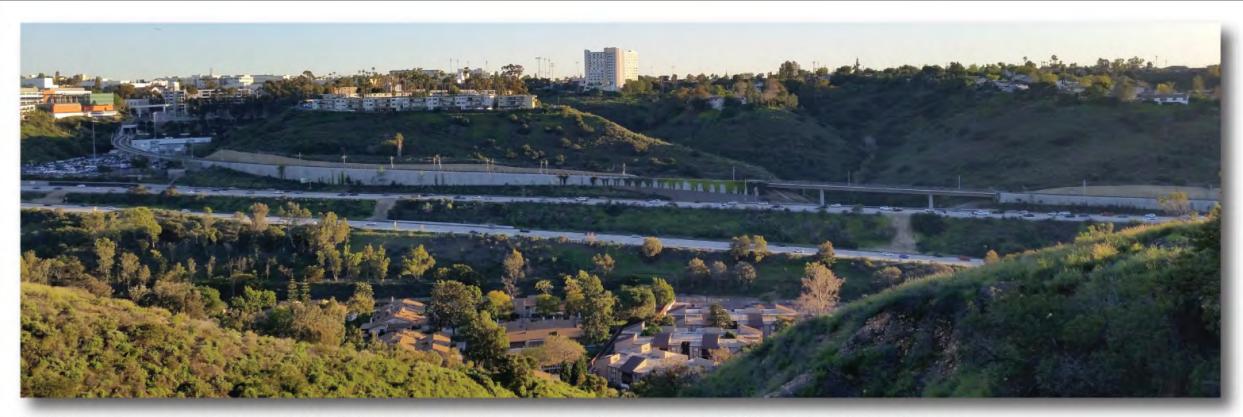
View of Interior Courtyard at Proposed Residence Halls

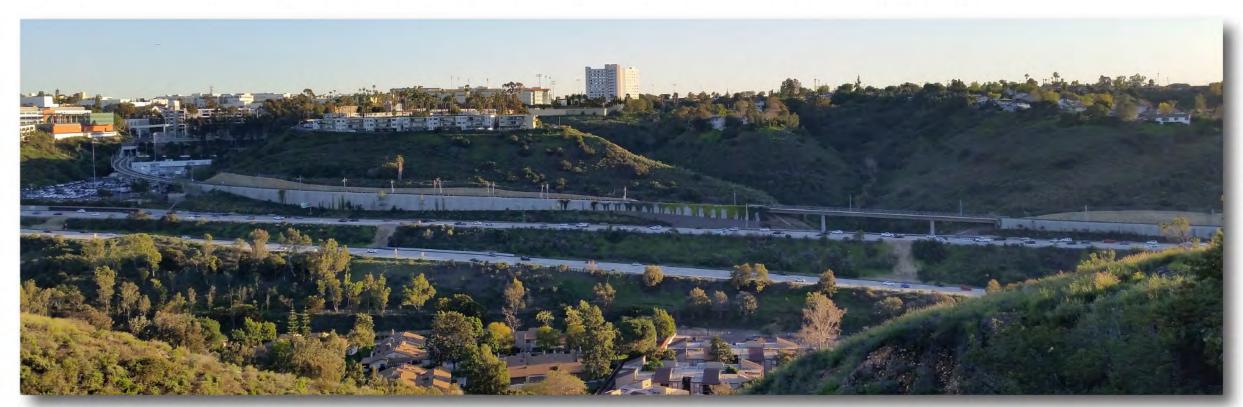
South Elevation

Source: Carrier Johnson 2017




SDSU
New Student Housing Project EIR




SDSU New Student Housing Project EIR

Existing Conditions - view looking south from Del Cerro Boulevard towards Chapultepec Residence Hall (approximately 0.6 mile away)

Visual Simulation of Proposed Project

New Student Housing Project EIR

SDSU

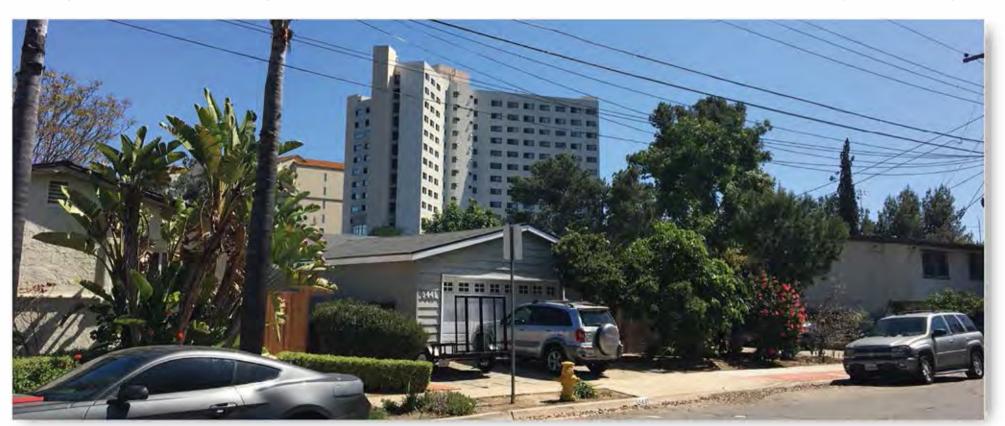
Key map

SAN DIEGO STATE UNIVERSITY

Existing Conditions - view looking east from Remington Road towards Chapultepec Residence Hall (approximately 0.3 mile away)

Rey View 2

REMINGTON RD


Key map

Visual Simulation of Proposed Project (blocked from view by Chapultepec Hall and residential landscaping)

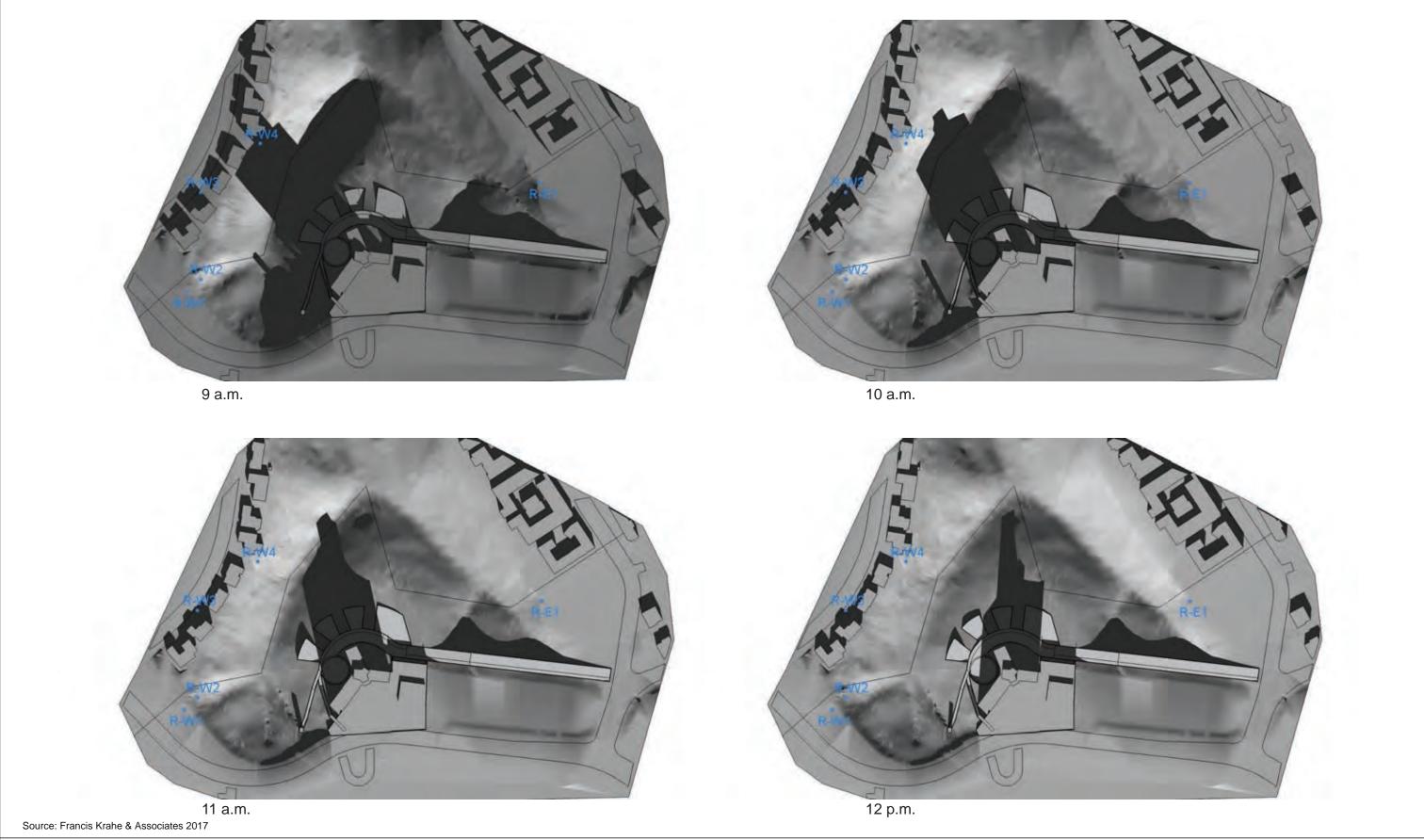
Existing Conditions - view looking southeast from Hewlett Drive to Chapultepec Residence Hall (approximately 500 feet away)

Visual Simulation of Proposed Project

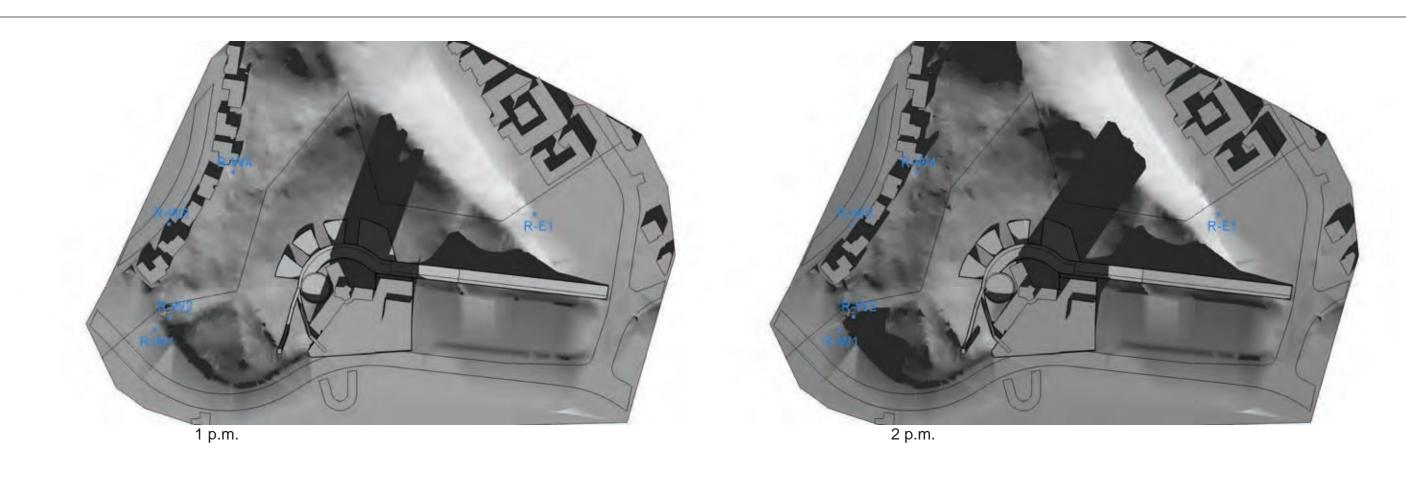
Key map

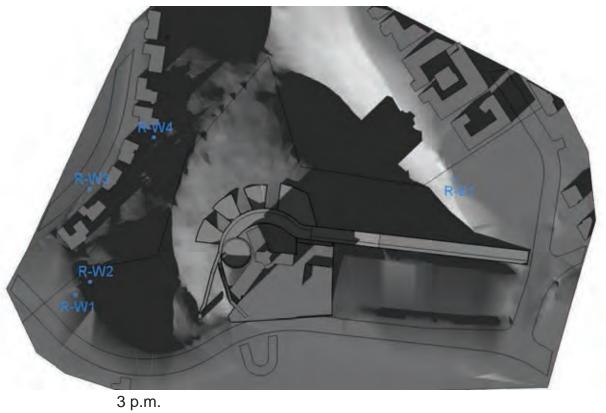
Existing Conditions - view from 55th Street looking west towards Chapultepec Residence Hall (approximately 0.15 mile away)

Key View 4


REMINGTON
RD

SEE TO SEE


Key map


Visual Simulation of Proposed Project

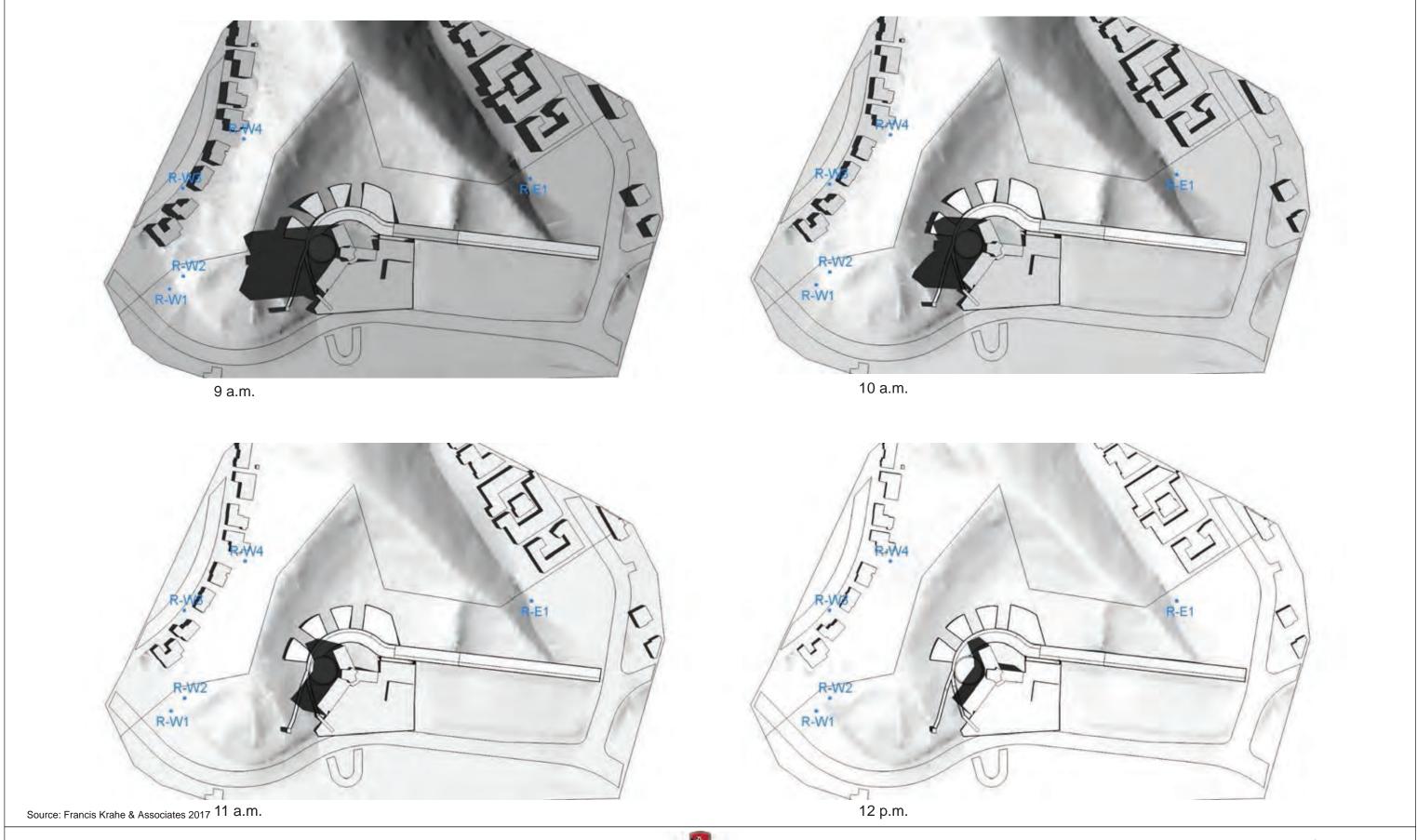
Source: Francis Krahe & Associates 2017

SAN DIEGO STATI UNIVERSITY

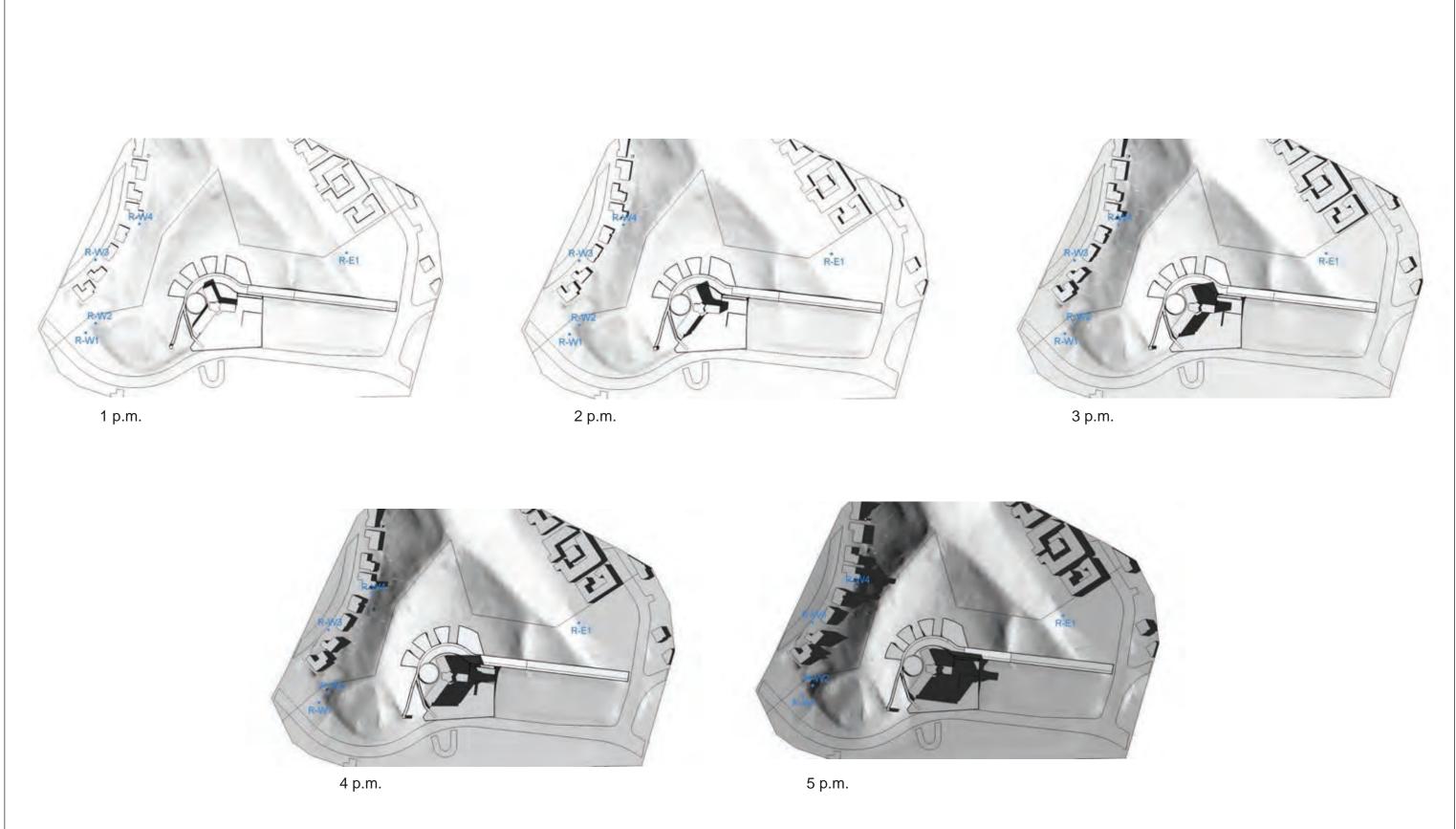
10a.m.

12 p.m.

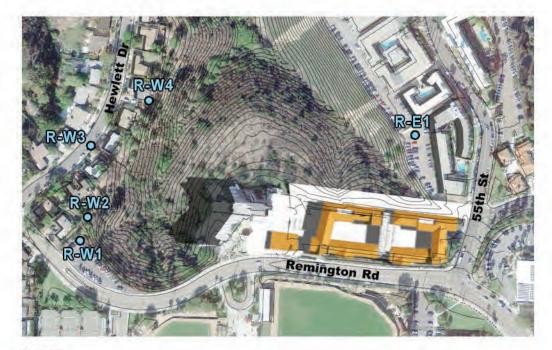
Source Dudek July 2017



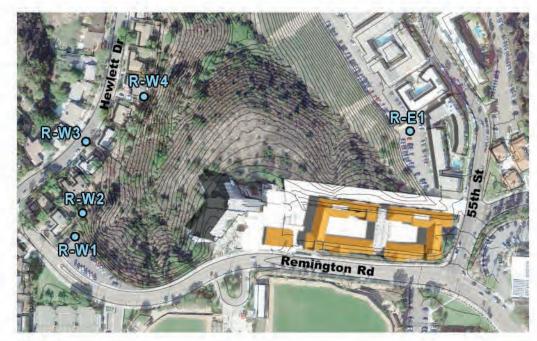
2 p.m.



Source: Dudek July 2017



SDSU
New Student Housing Project EIR



9 a.m.

11 a.m.

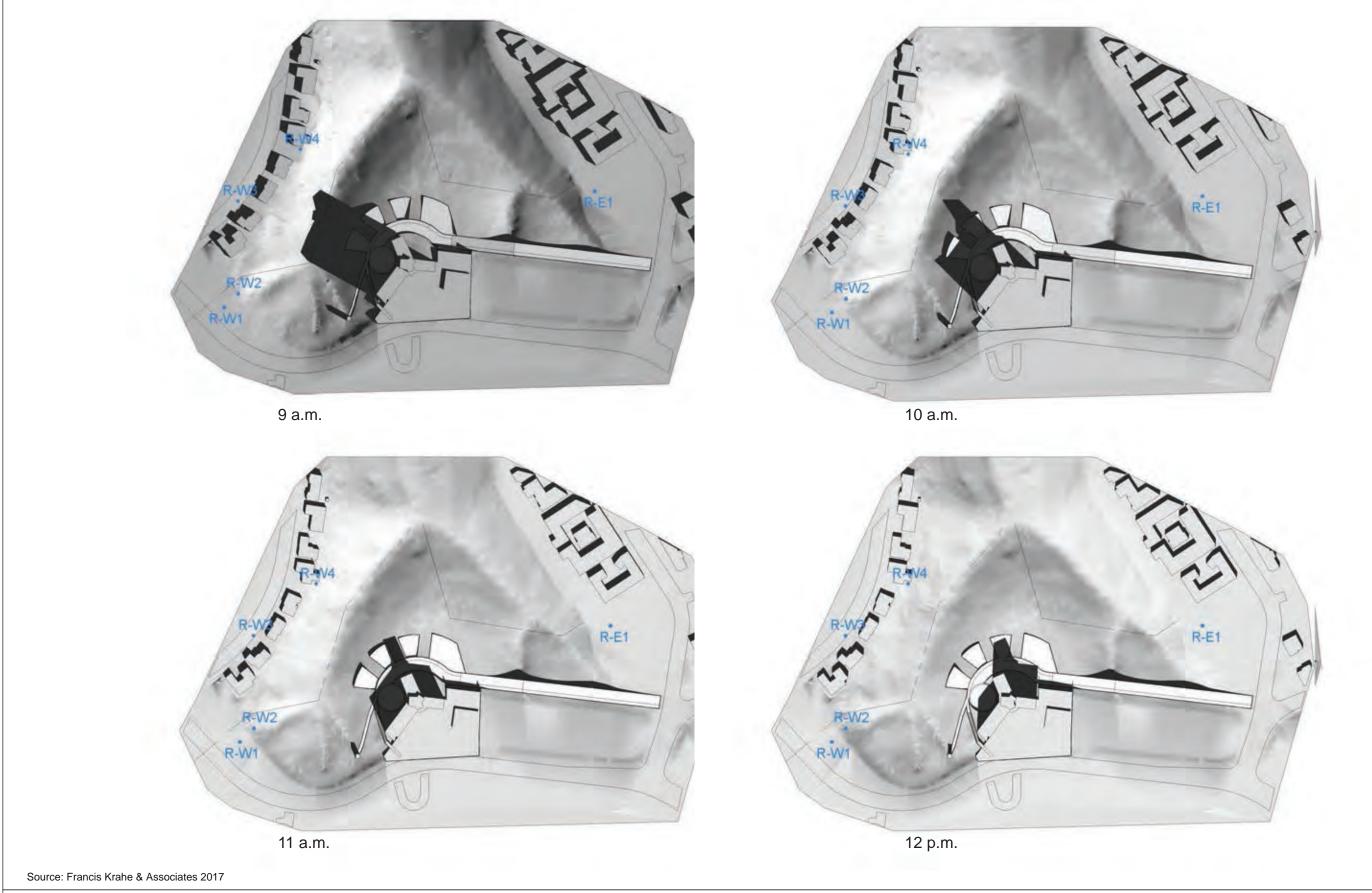


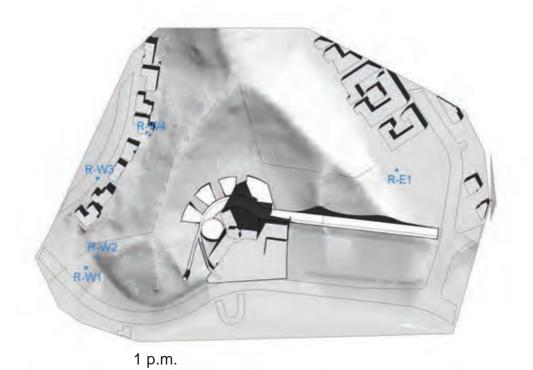
10 a.m.

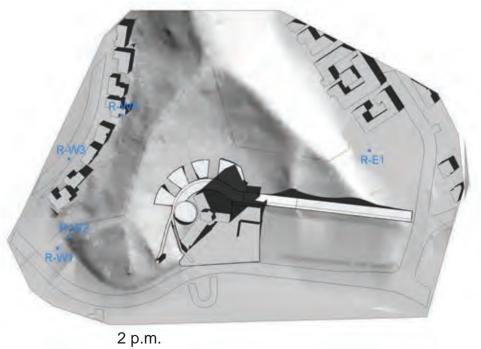
12 p.m.



2 p.m. 3 p.m.






5 p.m.

Source: Dudek July 2017

3 p.m.

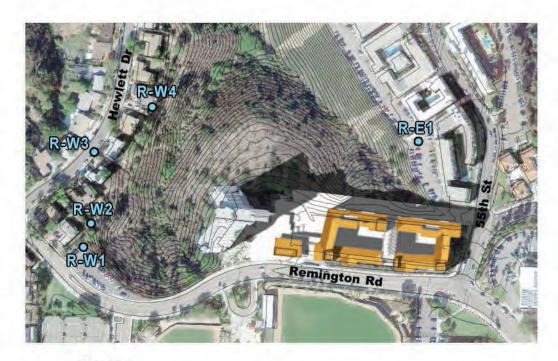
Source: Francis Krahe & Associates 2017

9 a.m.

11 a.m.

10 a.m.

12 p.m.


Source: Dudek July 2017

2 p.m.

3 p.m.

1 p.m.